


то	Zac Lovell	DATE	21/10/2025
FROM	Josh Farner	TIME	
PROJECT	New Tasmanian Youth Justice Facility	PROJECT Nº	24.0447
SUBJECT	Response to Council RAI	REF Nº	EA-C02

A Request for Additional Information (RFI) was received from Southern Midlands Council for the proposed Tasmanian Youth Justice Facility (DA2500106) on 30 September 2025.

The additional information concerning to the site Civil design has been provided in Civil Engineering Drawings and a revised Concept Services Report, both dated 21 October 2025. This Engineers Advice provides a summary of the RFI information provided in these documents, and provides further detail where required. It should be noted that the design drawings are for the purpose of concept design for development approval. Further engineering design will be carried out during the detailed design phase to produce the final design and documentation for construction.

RFI Item 2. Parking and Sustainable Transport Code

More detail is required to demonstrate how drainage is conveyed from car parking, hardstand, and driveway access areas to onsite detention basin. Details should include car park, hardstand and driveway grades (long sections and cross sections) and typical details of stormwater conveyance system and grades.

More detail is required to demonstrate that car park and access gradients are in accordance with Australian Standard AS 2890 - Parking facilities, Parts 1- 6. Provide cross sections and long sections of car park, hardstand and driveway access and show grades and levels of car parking and hardstand areas required for vehicle manoeuvring.

In addition, please provide detail and grades of cut and fill batters surrounding car park areas and provide detail of any vehicle safety barriers if required.

Refer updated Civil Engineering drawings for concept design finished surface contours, car park and roadway longitudinal sections, stormwater plans and longitudinal sections, and typical road and car park cross sections.

RFI Item 5. Stormwater

Stormwater system: Design. More detail required:

• Provide stormwater long sections for major internal stormwater alignments, sized to convey the 5% AEP storm event.

Concept stormwater design longitudinal sections are provided in drawings C410-412. Detailed hydraulic design of the system to cater for the 5% AEP rainfall runoff shall be undertaken for building approval, once the detailed landscape design is finalised. As noted in the concept services report, on site detention shall be provided to ensure that post development runoff (up to a 5% AEP rainfall event) does not exceed the 5% AEP pre-development runoff.

CONSULTING ENGINEERS

Provide details for general stormwater concepts for drainage of fire truck access road and building

Refer drawing C700 for typical roadway cross sections and drawings C400-402 for site stormwater plans.

- Provide detail for swale adjacent to entry road and proposed discharge point to Rifle Range Road.

 Refer Pitt and Sherry for design of this portion of the works (design by others).
- Provide cross sections of detention and bioretention basins with invert levels of stormwater infrastructure and bypass system for major events.
 - Refer drawing C701 for a cross section of the concept design detention and bioretention basin arrangement and outlet pipe. Refer drawing C400 for plan detail and detention basin overflow channel schematic design.
- Provide details of maintenance access road to detention and bioretention basin with turning head for 8.8m service vehicle at a minimum.
 - An unsealed gravel access road shall be provided as the maintenance access road to the detention and bioretention basins. This access road shall match the Fire Access road as detailed on drawing C700. Refer drawing C200 for the turning manoeuvre of an 8.8 m service vehicle on this road.
- Provide details of proposed upgraded table drain along Rifle Range Road and existing table drain discharge location.
 - Refer Pitt and Sherry for design of this portion of the works (design by others).

RFI Item 6. Stormwater system: Quality

Bioretention size has been reduced from the area estimation (based on the Derwent Estuary Program recommendations) using MUSIC modelling.

- Provide MUSIC treatment train, pollutant reduction output and MUSIC model file for confirmation of bioretention size calculations.
 - In conjunction with submitting the MUSIC model to Council for review, additional model information and results have been provided within the updated Concept Services Report.

- Provide details on stormwater quality improvements through the proposed swale adjacent to the
 access driveway from Rifle Range Road, and how runoff from the driveway can be cleaned to meet
 Council's water quality treatment targets specified in Gandy and Roberts' report.
 Refer Pitt and Sherry for design of this portion of the works (design by others).
- Provide details on maintenance schedules and responsibilities for detention and bioretention hasins.

A bioretention basin maintenance checklist has been provided in the updated Concept Services Report (refer Appendix C) detailing the inspection requirements and frequencies. This maintenance checklist shall also apply for the detention basin, with a consolidated document to be provided during detailed design which shall be integrated into the facilities' management systems manuals.

RFI Item 7. Soil and Water Management Plan (SWMP)

Because of the proximity to the Bagdad Rivulet, provide a Soil and Water Management Plan including erosion and sediment control measures during construction (basins, silt fencing, stabilised entry/exit, etc.).

It is recommended that this item be conditioned as part of the development Planning Permit, to be provided prior to start of works on site. This will allow the SWMP to be developed in conjunction with the builder and site manager and will ensure that the SWMP is appropriate at the time of construction.

RFI Item 8. On site sewer disposal

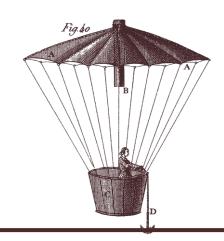
As the site cannot be connected to the Taswater sewer network and is identified within the SES 1% + CC shows H1 hazard level overland flow, please provide a Wastewater Assessment and Design Report prepared by a suitably qualified person to demonstrate that wastewater can be effectively be treated on the site.

Refer to the updated Concept Services Report Appendix A for post-development overland flow mapping. The proposed sewer treatment areas are located outside of the post-development 1% AEP overland flow extents.

Refer to the updated Concept Services Report Appendix D for sewer servicing concept design information and Onsite Wastewater Management Systems (OWMS) calculations. It should be noted that these calculations have been undertaken based on the concept design, and are to be verified during detailed design.

SMC - KEMPTON
RECEIVED
03/11/2025
GANDY AND
ROBERTS
159 DAVEY ST
HOBART TASMANIA
AUSTRALIA 7000
CONSULTING
ENGINEERS

RFI Item 11. Flood-Prone Areas Hazard Code


The SES 1% + CC shows H1 hazard level overland flow on the property, therefore the land is subject to risk from flood or has the potential to cause increased risk from flood. Council requests that a Flood Hazard Report be prepared by a suitably qualified person.

Also, please provide a Stormwater Management Plan prepare by a suitably qualified person that demonstrates the pre and post overland flow paths.

Refer to Section 2.1 and Appendix A of the updated Concept Services Report for an assessment of overland flow across the site, including pre- and post-development flow mapping for the 1% AEP + CC rainfall event. A revised flow path is proposed to redirect all overland flow around the site perimeter, ensuring an acceptable risk of inundation for the new buildings and users of the facility.

SMC - KEMPTON RECEIVED 03/11/2025

Tasmanian Youth Justice Facility Concept Services Report

466 Brighton Road, Pontville for Grieve Gillett Architects

21 October 2025

Version control

Revision	Description	Issue date	Issued by
Α	Preliminary Issue	13.06.2025	Joshua Farner
В	Issued for Development Approval	29.07.2025	Joshua Farner
С	Revised for Development Approval	21.10.2025	Joshua Farner

PROJECT NUMBER **24.0447**REPORT AUTHOR **Joshua Farner**CHECKED BY **Dale Hayers**

Gandy and Roberts Consulting Engineers STRUCTURAL CIVIL HYDRAULICS

ph (03) 6223 8877 fx (03) 6223 7183 mail@gandyandroberts.com.au 159 Davey Street Hobart, Tasmania 7000 www.gandyandroberts.com.au

Contents

1 Introduction	4
1.1 Existing Site	
2 Stormwater Management and Water Sensitive Urban Design	5 5 7
2.2.2 Analysis using the Model for Urban Stormwater Improvement Conceptualisation	
2.3 Stormwater Disposal	
3 Sewer Service Connection	
4 Water Service Connection	
Appendix A – 1% AEP Stormwater Overland Flow Mapping	
Appendix C – Bioretention Basin Maintenance Checklist	
Appendix D – Onsite Wastewater Management System (OWMS) Calculations	
Figures	
Figure 1: Site location	4
Figure 2: 1% AEP SES Strategic Flood Mapping	5
Figure 3: 1% Rainfall runoff catchment impacting the proposed development site	6
Figure 4: 1% + CC Rainfall runoff catchment impacting the proposed development site	7
Figure 5: Impervious site catchments	8
Figure 6: MUSIC catchment areas and treatment train effectiveness results	9
Figure 7: 5% AEP Pre-development site discharge	10
Figure 8: 5% AEP Post-development site discharge	
Figure 9: Site rainfall runoff	
Figure 10: Taswater sewer serviced land	12

1 Introduction

Gandy and Roberts Consulting Engineers have been engaged by Grieve Gillett architects to undertake aspects of the engineering design for the new Tasmanian Youth Justice Facility. The facility is proposed on a greenfield site located at 466 Brighton Road, Pontville, as shown in **Figure 1** below.

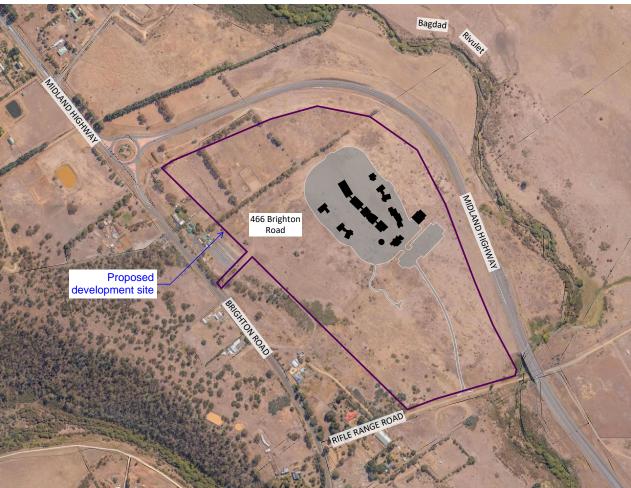


Figure 1: Site location

1.1 Existing Site

The entire site forms an area approximately 32 ha and is bounded to the north and east by the Midland Highway, and to the south by Rifle Range Road. A footprint within the site of approximately 6.99 ha will be utilised for the proposed facility. The site is predominantly gently sloping, with an average grade of around 2% falling from the north to the south. A broad and shallow valley passes through the centre of the land, forming a natural overland flow path towards Rifle Range Road.

The site is zoned as 'Rural' under the Tasmanian Planning Scheme.

1.1.1 Existing Infrastructure

There are no existing services within the footprint of the proposed development. As part of the development, access is to be provided via Rifle Range Road during an early works stage.

2 Stormwater Management and Water Sensitive Urban Design

As part of the site design, stormwater treatment and on-site detention (OSD) shall be provided to align the post-development runoff to pre-development conditions and meet the capacity of the receiving downstream infrastructure. Stormwater runoff from the new facility is proposed to be conveyed along the existing flow path through the site and shall be discharged to Rifle Range Road before ultimately reporting to the Bagdad Rivulet.

2.1 Overland Flow

An existing overland flow path within the site has been identified by the SES Strategic Flood Mapping (refer **Figure 2** below). The catchment reporting to the proposed development site is shown in **Figure 3**, and includes a small portion of the eastern face of Winton Hill on the western side of Brighton Road. This rainfall runoff is conveyed via culverts underneath Brighton Road, and, during more extreme rainfall events, contributes to localised rainfall runoff to form overland flow within the site.

For this analysis, only the contributing runoff affecting the new proposed buildings was considered. For the access road site design, a more extensive runoff catchment has been considered to encapsulate all runoff reporting to the new site access at Rifle Range Road. The site access shall be designed to provide 1% AEP flood immunity, ensuring access to the site during a high rainfall event. Refer Pitt and Sherry design Memo (Subject: Tasmanian Youth Justice Facility – Access Road Culvert Hydraulic Sizing, 18 September 2025) for further detail.

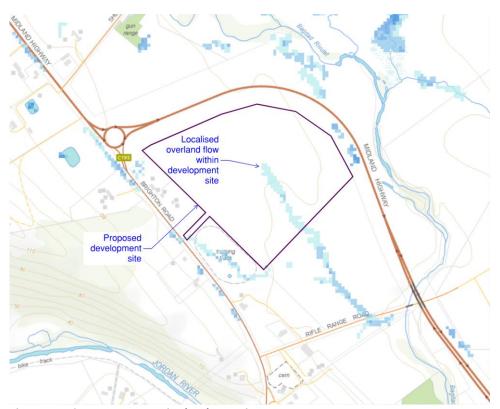


Figure 2: 1% AEP SES Strategic Flood Mapping

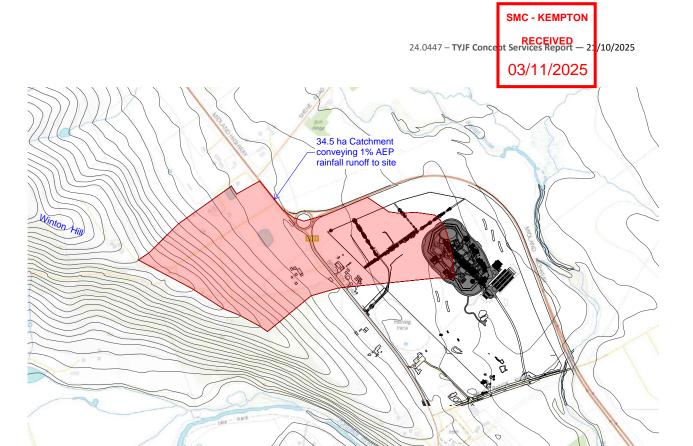


Figure 3: 1% Rainfall runoff catchment impacting the proposed development site

To quantify the rainfall runoff potentially impacting the development site under a 1% AEP flood event, a runoff analysis was undertaken in XPSWMM 2026 using the methods outlined in ARR 2019. Hydrological parameters were adopted in accordance with the Pitt and Sherry *Access Road Culvert Hydraulic Sizing* report. Rainfall depth data was obtained from the BOM for Latitude -42.676, Longitude 147.264 and an increase of 18% was applied for climate change effects. Runoff results for the catchment (as delineated in **Figure 3**) are presented in **Figure 4** below.

To protect the new development from overland flow, a landscape swale is proposed along the western boundary of the site, sized appropriately to convey 1% AEP rainfall runoff. To undertake concept design of this swale, 2D modelling was undertaken in 12d Model using the TUFLOW engine. Inundation maps are presented in Appendix A for the pre- and post-development site layout.

As shown in Appendix A, a modified overland flow path can be provided to effectively convey the 1% AEP rainfall runoff around the perimeter of the proposed development footprint. During detail design, a minimum of 300 mm freeboard shall be provided between the finished floor levels and the adjacent inundation levels, ensuring that the new buildings achieve a tolerable risk from flood. Given that the modified overland flow path shall be outside of the facility perimeter and all associated access roads, the food hazard is considered acceptable.

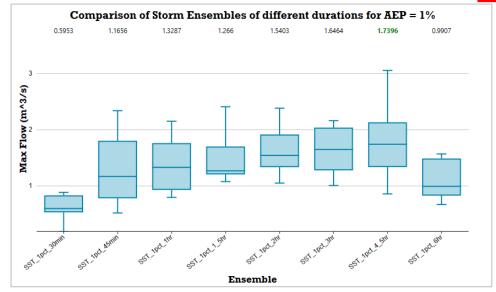


Figure 4: 1% + CC Rainfall runoff catchment impacting the proposed development site

2.2 Stormwater Treatment

In order to comply with Council requirements and incorporate water sensitive urban design (WSUD) into the development, stormwater detention and treatment shall be incorporated across the site to more closely align the developed site with the natural water cycle, minimise environmental degradation and enhance the landscape aesthetic.

To comply with Council policy, stormwater treatment targets shall be adopted as outlined in **Table 1** below.

Table 1: Water Quality Treatment Targets

From the Tasmanian State Stormwater Strategy 2010:

80% reduction in the average annual load of total suspended solids (TSS) based on typical urban stormwater TSS concentrations; AND

45% reduction in the average annual load of total phosphorus (TP) based on typical urban stormwater TP concentrations; AND

45% reduction in the average annual load of total nitrogen (TN) based on typical urban stormwater TN concentrations

WSUD may be implemented in a number of ways across the site, and will be distributed across the site to best align with the detail site design. WSUD elements may include:

- Swales
- Rainwater harvesting for on-site reuse
- Raingardens/Bioretention basins

Primary detention and treatment basins are proposed directly downhill of the main development site and car park. Due to the local landscape aesthetics and area available for WSUD, a bioretention system is considered the most suitable treatment solution for the development.

To investigate treatment options for the site and work towards the optimal treatment solution, two analyses have been undertaken for the preliminary sizing, as outlined below.

2.2.1 Analysis based on Derwent Estuary Program WSUD Engineering Procedures

This analysis was undertaken for several catchments across the site, as delineated in **Figure 5** below. The required treatment areas based on the DEP analysis are provided in **Table 2** below, and indicate a bioretention system requirement of $530 \, \text{m}^2$.

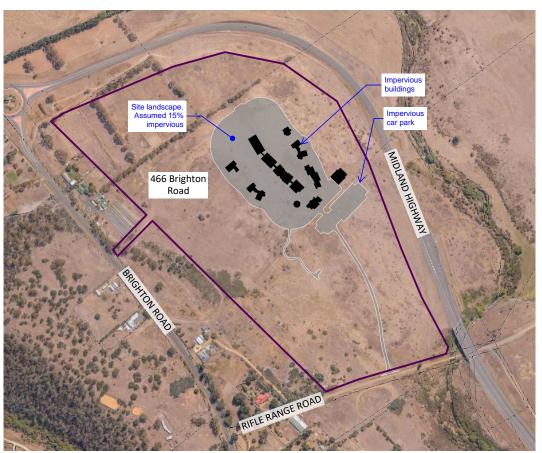


Figure 5: Impervious site catchments

Table 2: Bioretention treatment requirements (DEP analysis)

Table 2. Bioletention		,		Bioretention				
Catchment	Total area (m2)	% impervious	Tot. impervious	Req'd area:	1.30%			
			area (m2)	Scaling:	1.8152			
BLDG A	534	100%	534	13				
BLDG B	710	100%	710	17				
BLDG C/D	807	100%	807	19				
BLDG E/F/G/H	2845	100%	2845	67				
BLDG J	614	100%	614	14				
BLDG K	614	100%	614	14				
BLDG L	248	100%	248	6				
BLDG M	174	100%	174	4				
BLDG N	395	100%	395	9				
Site Landscape	41872	15%	6280.8	148				
Car Park	5414	100%	5414	128				
TOTAL	54,227		18,635	SUM	440			

2.2.2 Analysis using the Model for Urban Stormwater Improvement Conceptualisation

For comparison, a further analysis was undertaken in MUSIC for the entire site, with results outlined in **Table 3 below**. This analysis considered the entire stormwater treatment train, including the proposed detention basin and roadside swales. From this analysis, the site bioretention requirement is estimated to be 230 m² (filtration area).

Table 3: MUSIC analysis site catchment areas

Catchment (area; ha)	Area (ha)	% Impervious				
Buildings (0.69 ha)	0.69 ha	100%				
Landscape (4.14 ha)	4.14 ha	15%				
Car Park (0.54 ha)	0.54 ha	100%				
Fire ring road (0.032 ha)	0.032 ha	100%				

The MUSIC model catchment areas and treatment train results are presented in **Figure 6** below. A concept bioretention schematic detail is provided in Appendix B. A Bioretention Basin Maintenance Checklist is provided in Appendix C, with recommended inspection frequencies and actions.

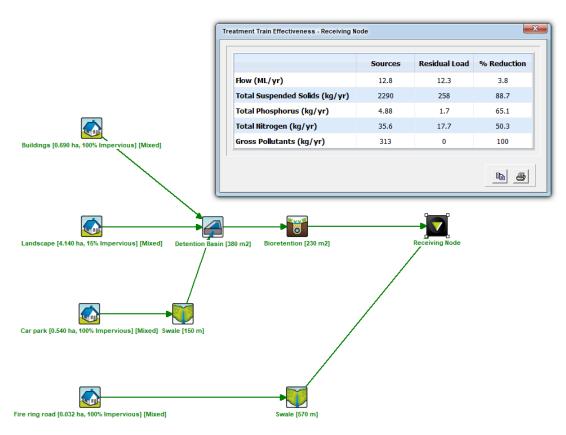


Figure 6: MUSIC catchment areas and treatment train effectiveness results

The treatment area can be accommodated on site. The required treatment area will be finalised during detail design, and may incorporate a distributed approach across the site. Additional WSUD elements may be provided to the site access road in addition to a grass lined swale drain. Council stormwater quality treatment targets will be met, with final results provided in detail design.

2.3 Stormwater Disposal

Rainfall runoff from the site currently drains to Rifle Range Road to the south of the site. As a part of this development, detention will be designed in order to reduce post-development runoff to align with the pre-development conditions for rainfall events up to the 5% Annual Exceedance Probability event, to ensure that downstream networks are not adversely impacted as a result of the development.

A hydrological analysis has been undertaken on the development footprint, with the pre-development estimated runoff flow rates for the 5% AEP rainfall event shown in **Figure 7** below.

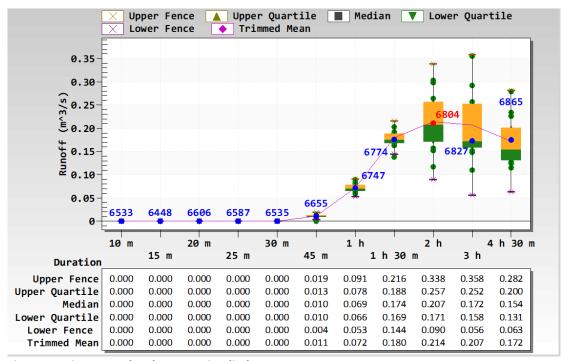


Figure 7: 5% AEP Pre-development site discharge

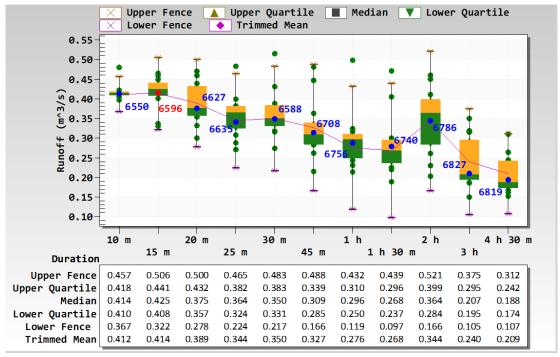


Figure 8: 5% AEP Post-development site discharge

From this analysis, the permissible site discharge (PSD) from the development area can be taken as 207 L/s. To detain the post-developed site to the PSD, an estimated detention volume of 240 m³ will be required. This has been calculated based on the concept design impervious catchments. The final detention requirement shall be calculated during detail design based on the fully developed landscape design, and may result in a reduced detention volume.

On Site Detention (OSD) is intended to be provided via an above ground landscape basin downhill of the proposed development site. The basin will be designed to integrate into the existing overland flow path within the site and shall be designed with a similar visual aesthetic to a farm dam. Stormwater discharge hydrographs for the pre-development, post-development, and post-development with detention site runoff are presented in **Figure 9** below. These results present the median peak flows for the critical storm events for the concept design analysis. As shown, the post-development site discharge can be limited to the pre-development site runoff.

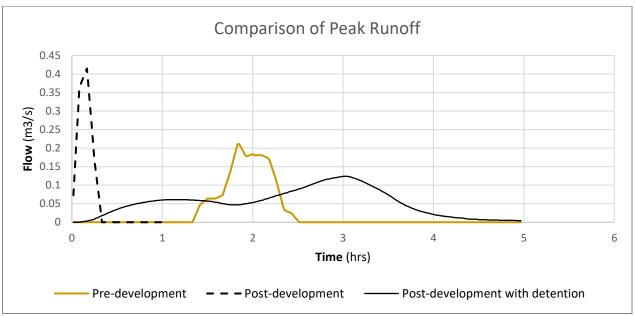
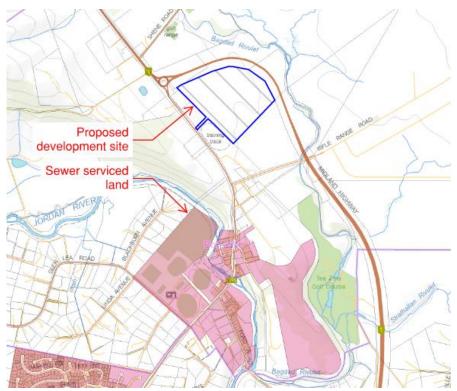


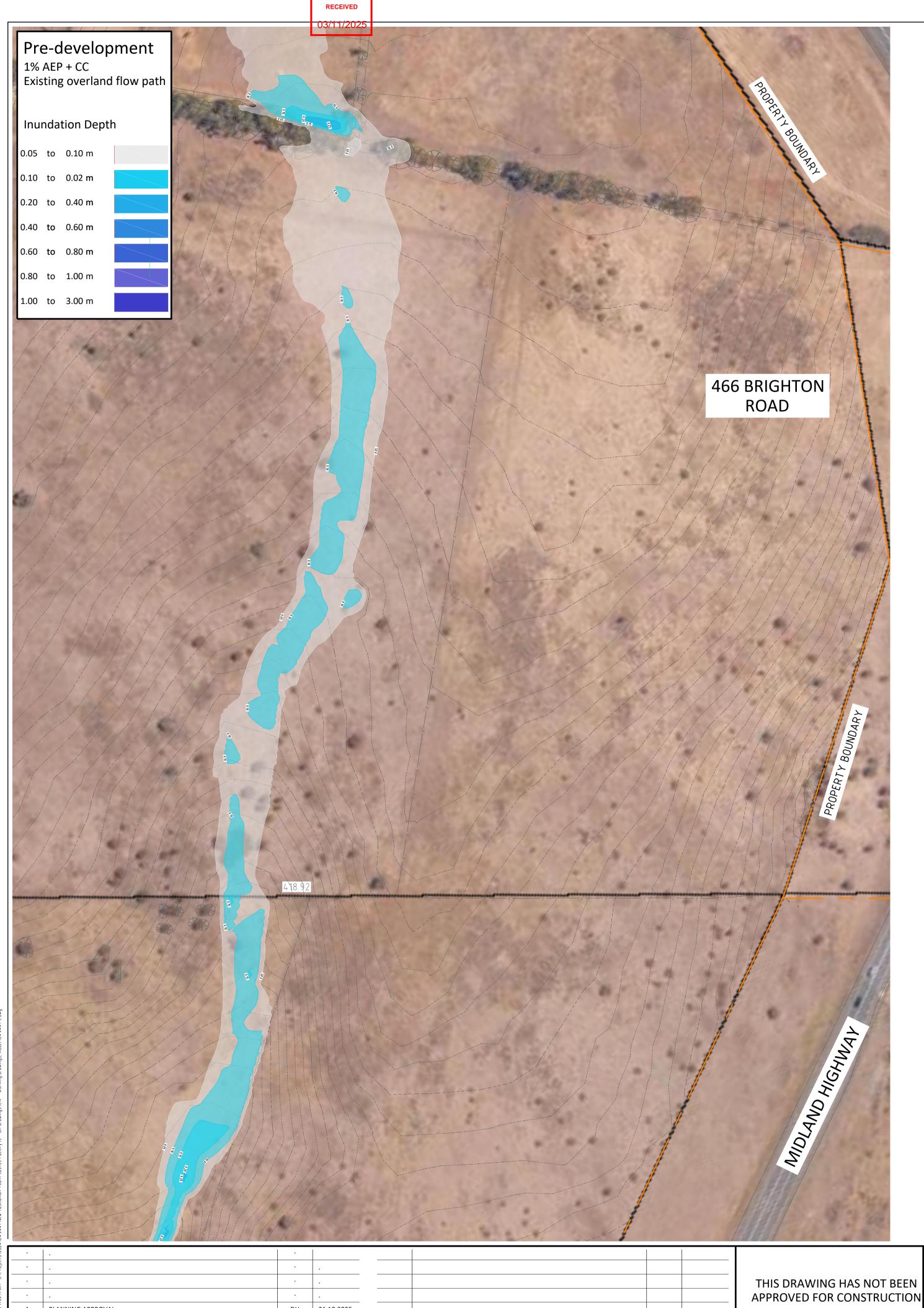
Figure 9: Site rainfall runoff

3 Sewer Service Connection

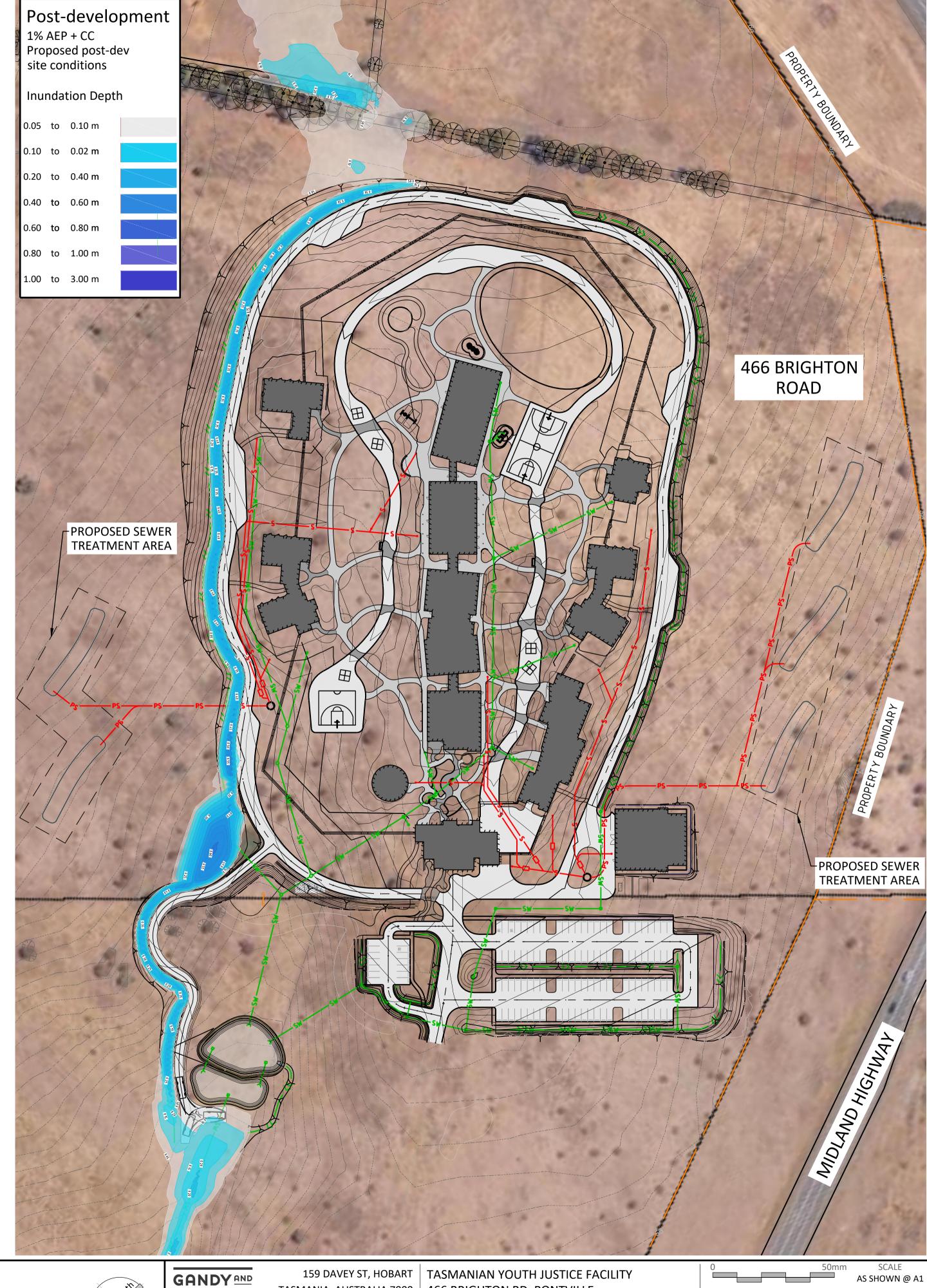
Currently, the proposed development site is not serviced by Taswater's municipal sewage network, as shown in **Figure 10** below. Under the Tasmanian Planning Scheme, sewer servicing requirements are not directly addressed for Buildings and Works under *Section 20: Rural Zone*. In accordance with Section 11.5.3, however, lots "must be capable of accommodating an on-site wastewater treatment system adequate for the future use and development of the land."

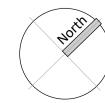
For this development, primary effluent treatment is proposed via a distributed system of septic tanks. Two sewer pump wells are proposed (providing redundancy to the site) with Land Application Areas designated to the east and to the west of the development. Refer Appendix D for a concept design sewer servicing summary and OWMS calculations. These calculations have been undertaken to inform the concept design, and shall be verified during detailed design.




Figure 10: Taswater sewer serviced land

4 Water Service Connection


In conjunction with the proposed development, upgrades will be undertaken to Rifle Range Road to support the new site access. Upgrades shall be undertaken to the Taswater main within Rifle Range Road, with a new water property connection provided at the site access. Water services, including new property connection and metering, shall be designed and detailed by others.



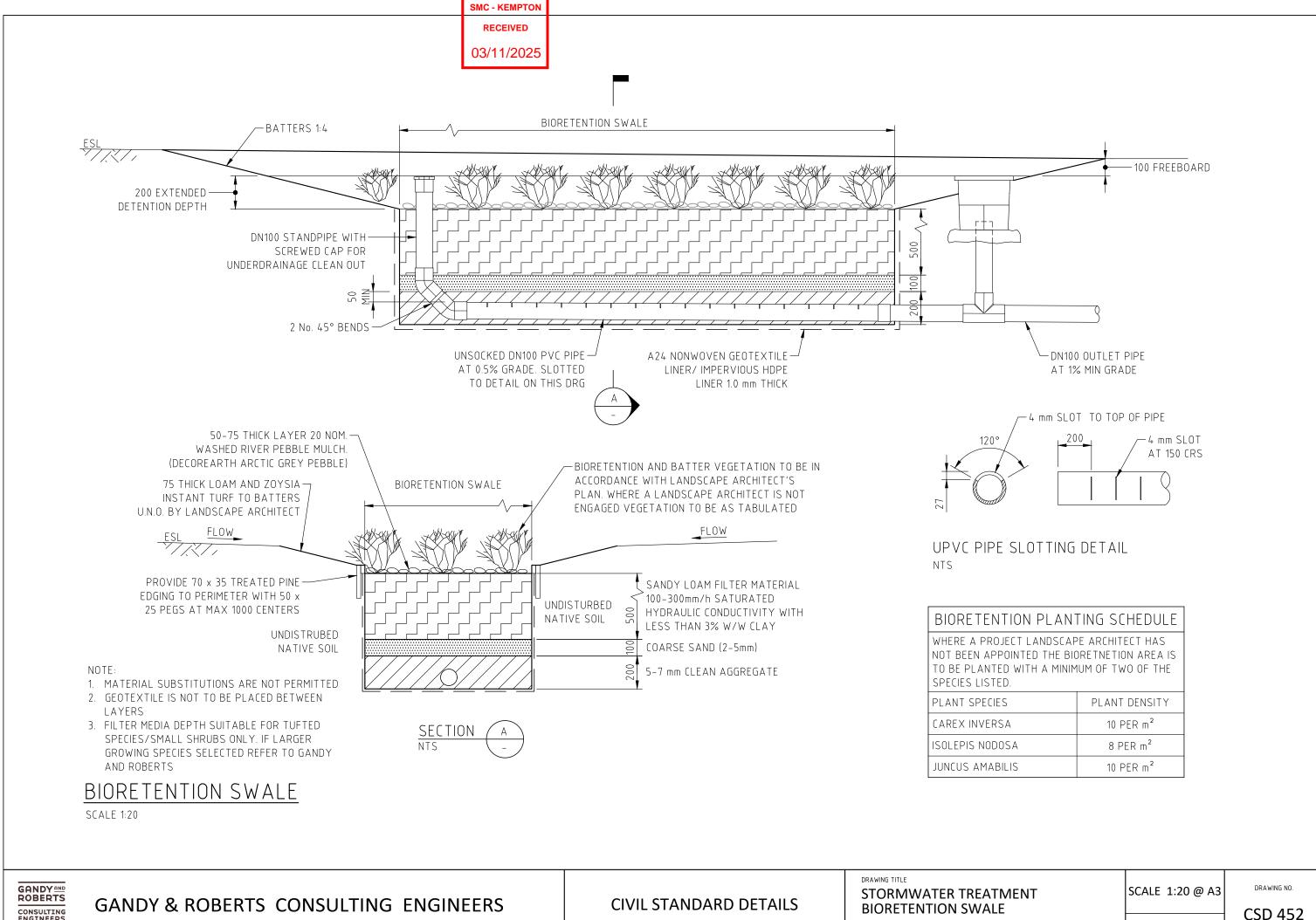
Appendix A – 1% AEP Stormwater Overland Flow Mapping

SMC - KEMPTON

GANDY AND ROBERTS CONSULTING ENGINEERS

www.gandyandroberts.com.au TASMANIA 7030 mail@gandyandroberts.com.au ph 03 6223 8877 | 1% AEP OVERLAND FLOW

TASMANIA, AUSTRALIA 7000 | 466 BRIGHTON RD, PONTVILLE


CHECKED DESIGNED DRAWN PROJECT DRAWING REVISION 24.0447 C090

•		•				
•			•			
•						
•						
A	PLANNING APPROVAL	DH	21.10.2025			
REV	DESCRIPTION	APP'D	DATE	F	REV	DESCRIPTION

APP'D DATE

Appendix B – Bioretention Schematic Detail

CONSULTING ENGINEERS

05.03.2020

Appendix C – Bioretention Basin Maintenance Checklist

	Maintenance Checklist cy: Monthly (Years 1-2), 3-Monthl	ly (Ye	ears 3	3+)
Date of Visit:				
Basin:				
Description:				
Site Visit By:				
Inspection Items		Υ	N	Action Required (details)
Sediment accumulation	on at inflow points?			
Litter within basin?				
Erosion at inlet or oth	ner key structures (e.g. crossovers)?			
Traffic damage prese	nt?			
Evidence of dumping	(e.g. building waste)?			
Vegetation condition	satisfactory (density, weeds etc)?			
Replanting required?				
Mowing required?				
Clogging of drainage points (sediment or debris)?				
Evidence of ponding?				
Damage/vandalism to structures present?				
Surface clogging visib	le?			
Drainage system insp	ected?			
Subsoil drains flushed	d at I.O. points?			
Additional maintenar	nce items required?			

Comments:

Appendix D – Onsite Wastewater Management System (OWMS) Calculations

SMC - KEMPTON RECEIVED 03/11/2025

21 October 2025

Gandy and Roberts 159 Davey Street Hobart TAS 7000

Attention: Josh Farner, Dale Hayers

RE: Onsite Wastewater Management System (OWMS) Calculations
Tasmanian Youth Justice Facility, Pontville.

The system design is based on the following inputs and concepts:

- The estimated Daily Hydraulic Loading (DHL) = 10,000L across the site.
- Using primary treatment systems involving septic tanks and pump wells to avoid using expensive secondary treatment systems (STS or AWTS) thus reducing ongoing maintenance expenses associated with an STS system.
- Using approved, readily available off the shelf components such as domestic sized septic tanks (4500L) and pump-wells/holding tanks. Such tanks require only around 1.65m of excavation for installation and CBOS approved Tasmanian made products are readily available.
- Grouping buildings into a number of zones (see Figure 1) that allow:
 - Firstly, up to 2000L of DHL per zone which suits a 4500L septic tank (that is, the capacity to process 2000L per day, i.e. 24hr residence time).
 - Secondly, gravity feed based on the site contours to a septic tank and pump well located outside the facility perimeter.

Reference: TG25070/1 - 02OWMS Calcs Rev01

- The type of land application method recommended for the site, being sand mounds (aka Wisconsin mounds), which are suited to processing primary treated effluent at sites with shallow soils over a limiting layer such as rock.
- Using a number of Land Application Areas (LAA's) incorporated around the site to reduce pumping distances and make alternate dosing to the mounds simpler. The efficacy of a sand mound is improved with smaller more frequent doses. Alternate dosing also allows longer loading and resting intervals, which also improves efficacy. Simple maintenance free off the shelf components such as 'K-Rain' valves are readily available for alternate dosing of effluent into a number of zones.

SMC - KEMPTON RECEIVED 03/11/2025

OWMS Calculations

To calculate the size and shape of the sand mound LAA, we need to consider the following:

- The soil at the site is deemed to be a well-structured 'Category 5' sandy, silty CLAY soil.
- The Design Loading Rate (DLR) for this type of soil is 8L/m²/day when using a sand mound LAA.
- The DHL at the site is estimated as 10,000L/day.
- The minimum area (sand mound foot print) required is 10,000L/day / 8L/m²/day = 1250m².
- The Standard (AS/NZS 1547:2012 OWMS) recommends that where there is shallow soil and a limiting layer, the effluent will mostly move horizontally in the soil beneath the linear toe (i.e. the downslope front edge of the sand mound). Therefore, it is recommended that the application rate does not exceed 50L/m/day at the front edge.
- Thus, the total length of the front edge of the mound/s should be 10,000L/day / 50L/m/day = 200m. .
- Figure 1 shows the concept layout:
 - Grouping of building with gravity fed lines to one 4500L (minimum) septic tank per building group. The buildings are grouped to obtain between 1200L and 1800L of wastewater output per day.
 - Then, primary treated effluent from the septic tanks will be gravity feed to 2 pumpwells, accepting effluent from 2 or 4 septic tanks each.
 - It is recommended that the pump wells pump a dose of no more than 500L at a time, preferably less. The pump wells should be sized to provide at least 24hr emergency capacity within the pump well which is a requirement.
 - We recommend a dual pump system be installed at each pump-well, with the second pump acting as back up. A visible and audible high level alarm is required to be installed for each pump well.
 - Effluent from each pump well will be pumped to dedicated sand mounds, with at least 2 dosing zones within each mound, via 32mm lilac poly pressure pipe and a 32mm K-Rain valve.
 - The mounds are to be built along the contour. A layout parallel to the carpark is not recommended.
 - If using 5 mounds as suggested, the downslope toe length of each mound will need to be 200m / 5 = 40m long each. See Figure 1.
 - o The width of the mound will be 6.3m minimum.
 - The height of the mound will be around 1.2m above natural ground level.
 - The basal area of the mounds is $5 \times 40 \text{m} \times 6.3 \text{m} = 1260 \text{m}^2$.

Vegetation other than grass could be planted on the mounds, as long as it is shallow rooted. The type of vegetation may also be dictated by security requirements for the site.

Mulch cover is not recommended as mulch will help retain moisture. The aim of the mounds is to facilitate as much evapotranspiration as possible.

Should you require further information or clarification of any details, please do not hesitate to contact undersigned.

Kind regards,

Dr Wayne Griffioen

Principal Geotechnical Engineer

Attachments: Important Information about your Report (1 page)

Figure 1 – Concept site layout (1 page)

Important information about your report

These notes are provided to help you understand the limitations of your report.

Project Scope

Your report has been developed on the basis of your unique project specific requirements as understood by Tasman Geotechnics at the time, and applies only to the site investigated. Tasman Geotechnics should be consulted if there are subsequent changes to the proposed project, to assess how the changes impact on the report's recommendations.

Subsurface Conditions

Subsurface conditions are created by natural processes and the activity of man.

A site assessment identifies subsurface conditions at discrete locations. Actual conditions at other locations may differ from those inferred to exist, because no professional, no matter how qualified, can reveal what is hidden by earth, rock and time.

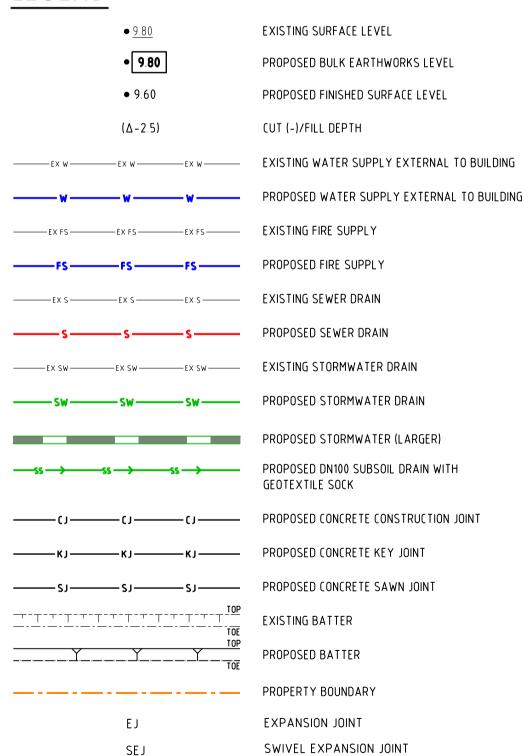

Nothing can be done to change the conditions that exist, but steps can be taken to reduce the impact of unexpected conditions. For this reason, the services of Tasman Geotechnics should be retained throughout the project, to identify variable conditions, conduct additional investigation or tests if required and recommend solutions to problems encountered on site.

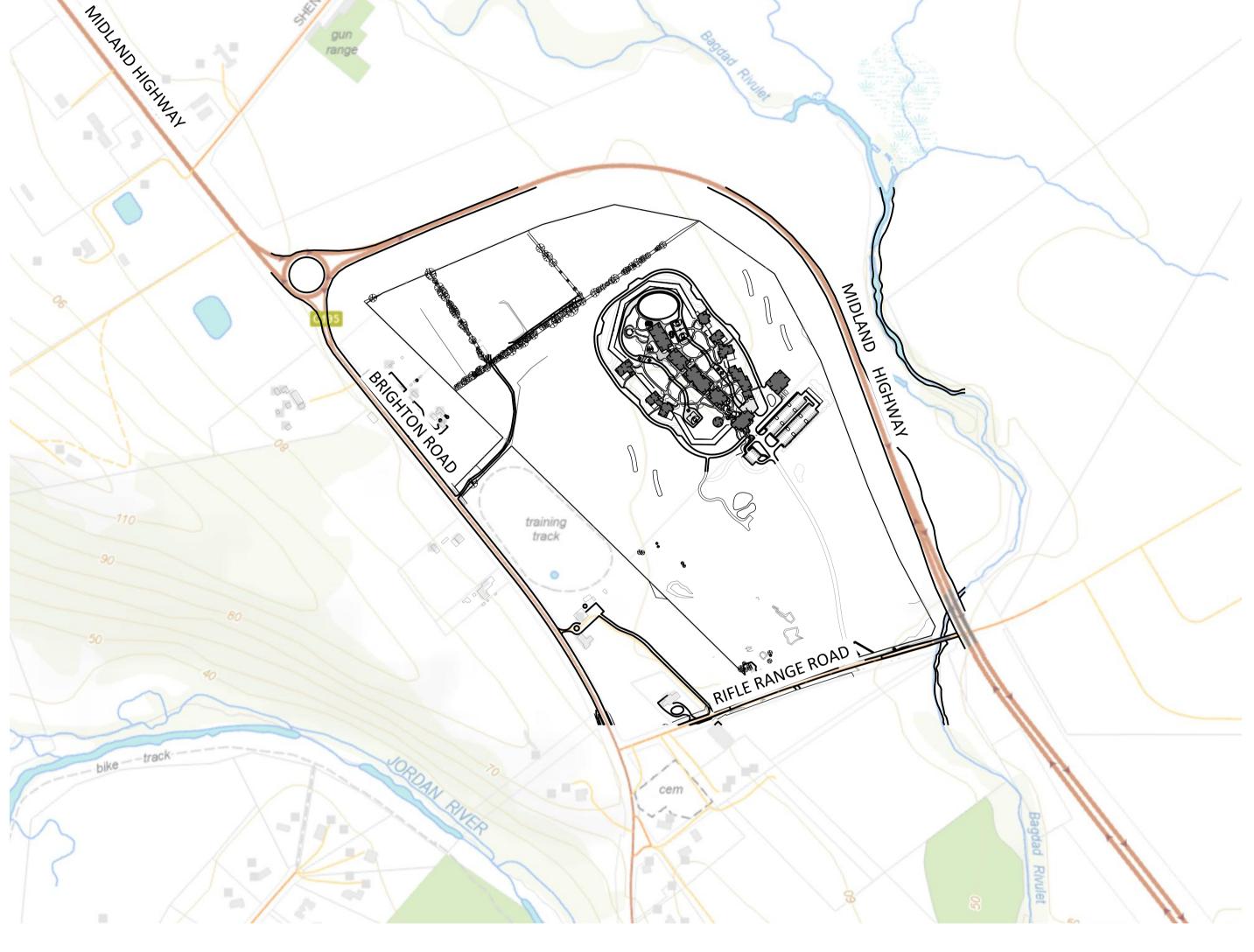
Advice and Recommendations

Your report contains advice or recommendations which are based on observations, measurements, calculations and professional interpretation, all of which have a level of uncertainty attached.

The recommendations are based on the assumption that subsurface conditions encountered at the discrete locations are indicative of an area. This can not be substantiated until implementation of the project has commenced. Tasman Geotechnics is familiar with the background information and should be consulted to assess whether or not the report's recommendations are valid, or whether changes should be considered.

The report as a whole presents the findings of the site assessment, and the report should not be copied in part or altered in any way.

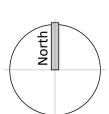

SMC - KEMPTON RECEIVED 03/11/2025



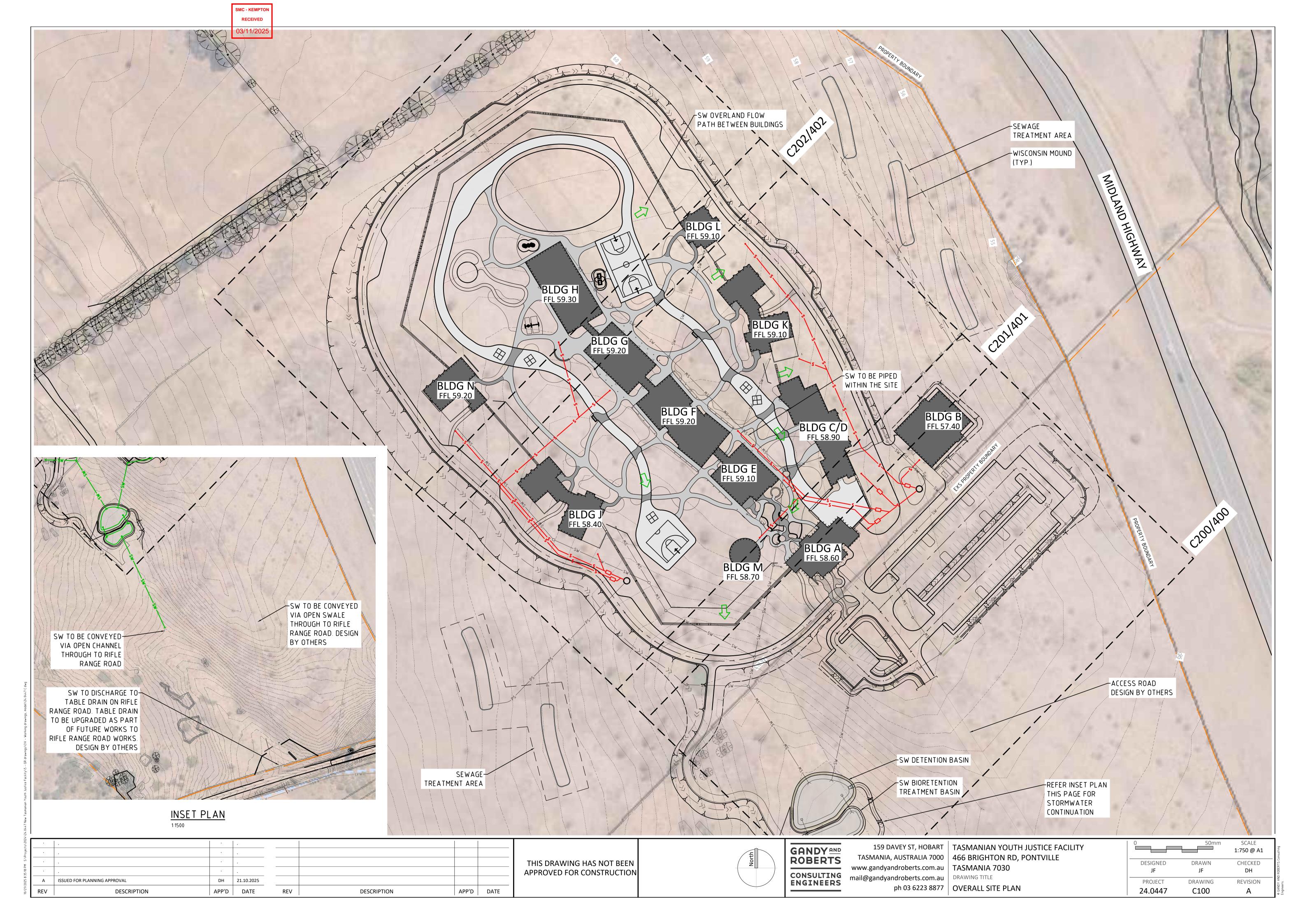
DEPT PREMIER AND CABINET TASMANIAN YOUTH JUSTICE **FACILITY** 466 BRIGHTON ROAD PONTVILLE 7030

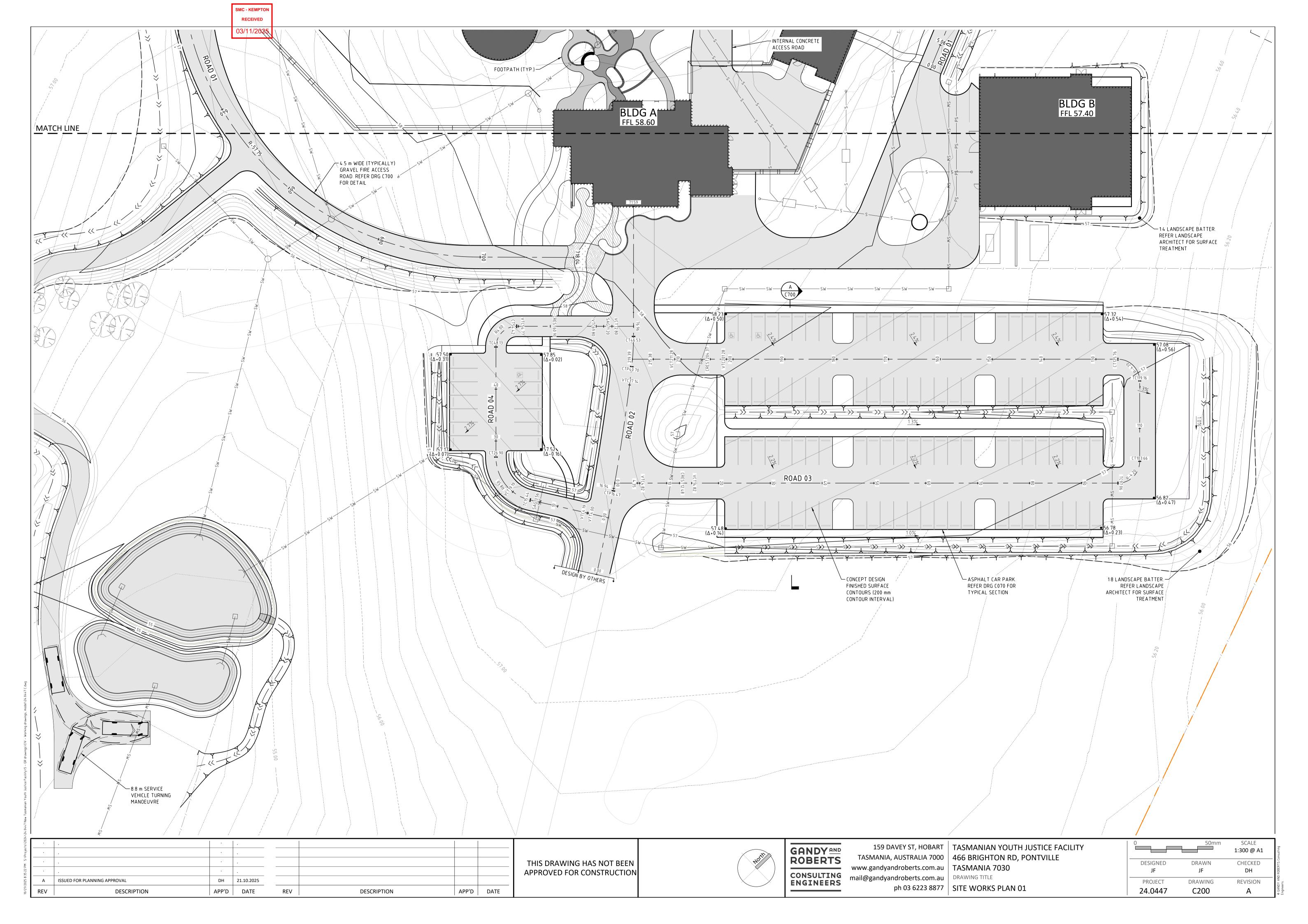
DWG No.	DRAWING TITLE	REV	ISSUE DAT
C001	DRAWING INDEX AND NOTES	Α	21.10.2025
C100	OVERALL SITE PLAN	Α	21.10.2025
C200	SITE WORKS PLAN 01	Α	21.10.2025
C201	SITE WORKS PLAN 02	Α	21.10.2025
C202	SITE WORKS PLAN 03	Α	21.10.2025
C210	LONGITUDINAL SECTIONS 01	Α	21.10.2025
C211	LONGITUDINAL SECTIONS 02	Α	21.10.2025
C212	LONGITUDINAL SECTIONS 03	Α	21.10.2025
C213	LONGITUDINAL SECTIONS 04	Α	21.10.2025
C214	LONGITUDINAL SECTIONS 05	Α	21.10.2025
C400	STORMWATER AND SEWER PLAN 01	Α	21.10.2025
C401	STORMWATER AND SEWER PLAN 02	Α	21.10.2025
C402	STORMWATER AND SEWER PLAN 03	Α	21.10.2025
C410	STORMWATER LONG. SECTIONS 01	Α	21.10.2025
C411	STORMWATER LONG. SECTIONS 02	Α	21.10.2025
C412	STORMWATER LONG. SECTIONS 03	Α	21.10.2025
C700	DETAILS 01	Α	21.10.2025
C701	DETAILS 02	Α	21.10.2025

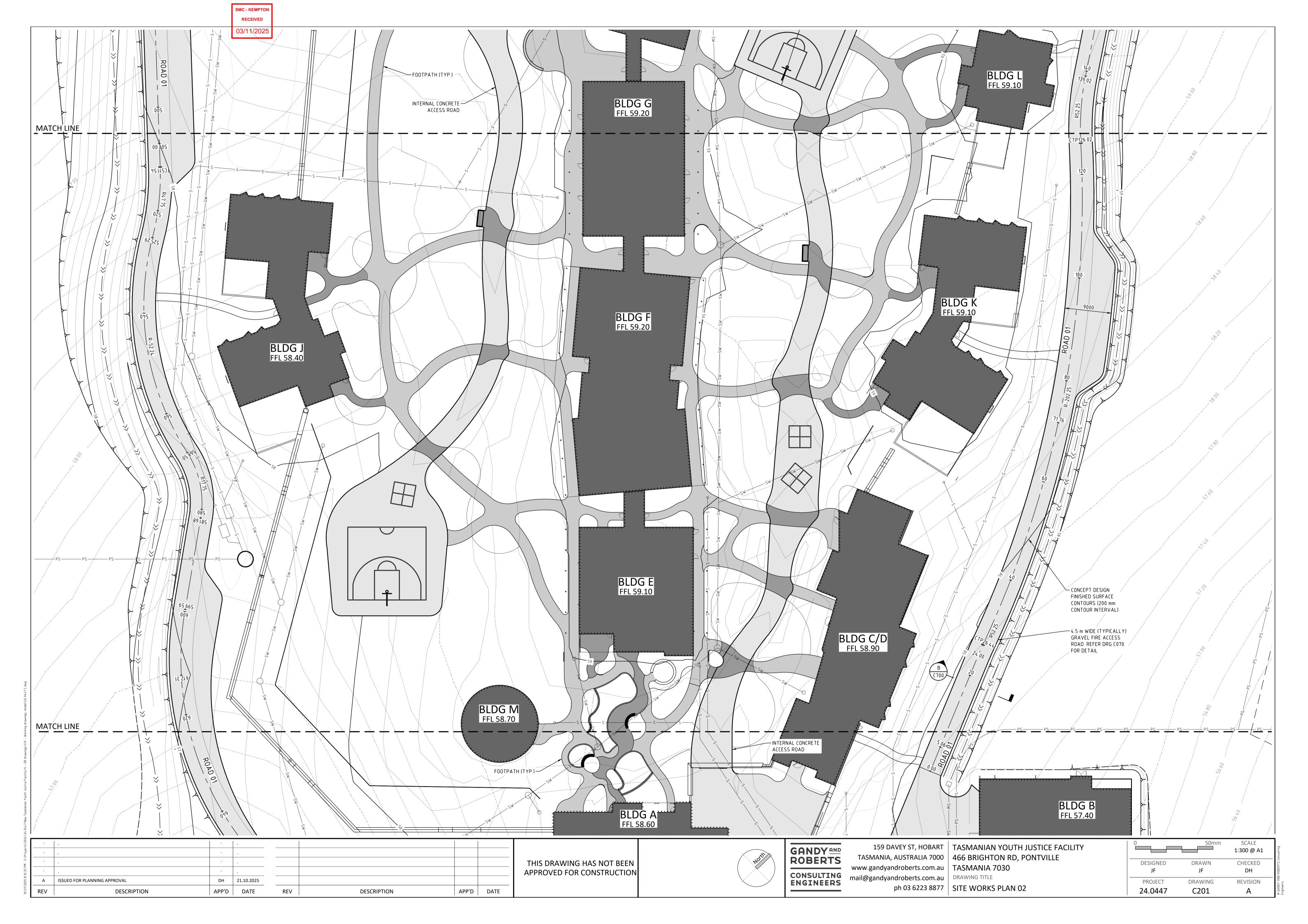
LEGEND

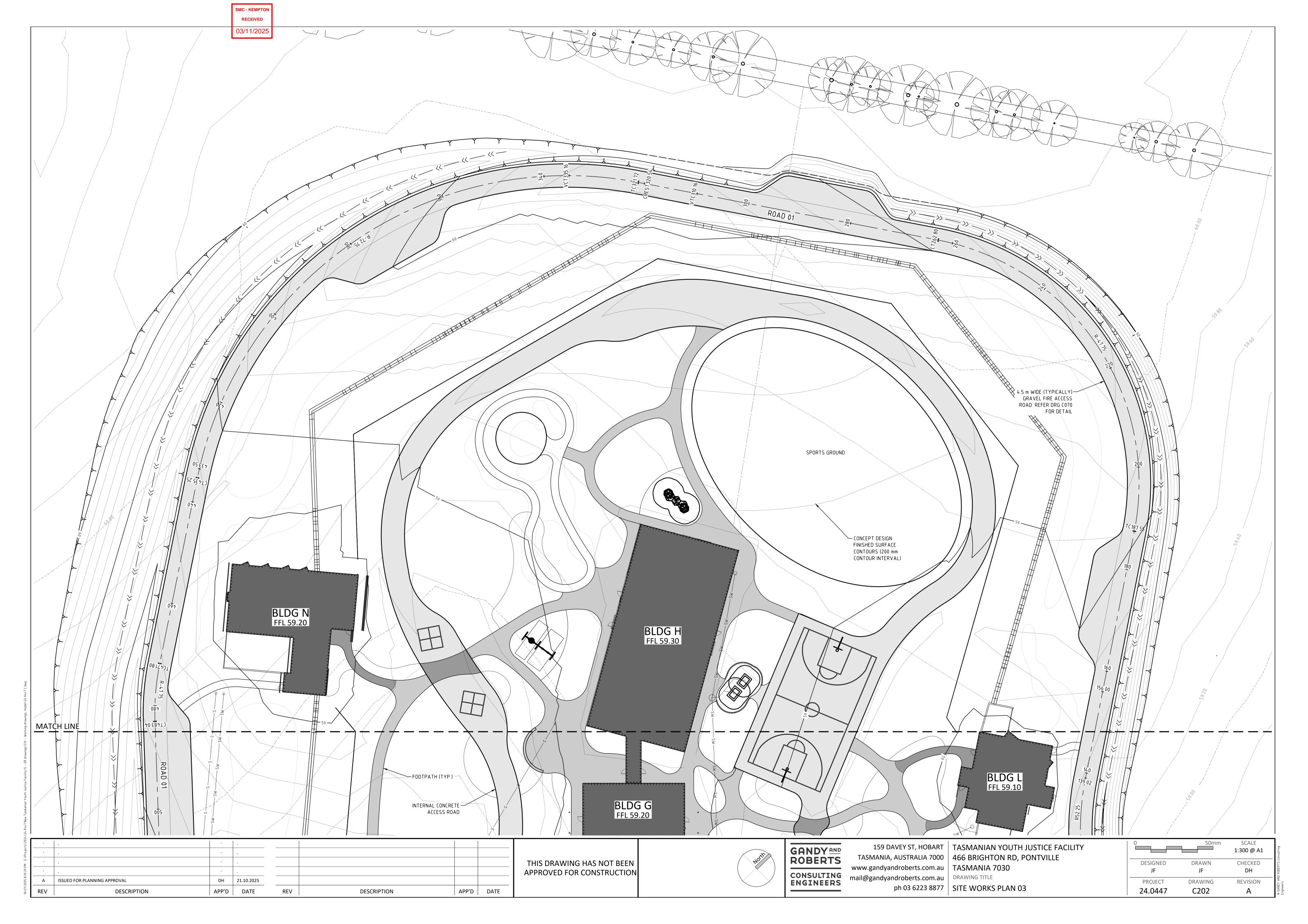


		• .					
Projec		· .					
Σ. Σ		· .					THIS DRAWING HAS NOT BEEN
7 ZF:28		· .					APPROVED FOR CONSTRUCTION
A A	ISSUED FOR PLANNING APPROVAL	DH 21.1	0.2025				
REV	DESCRIPTION	APP'D D	ATE REV	DESCRIPTION	APP'D	DATE	




GANDY AND ROBERTS
CONSULTING ENGINEERS

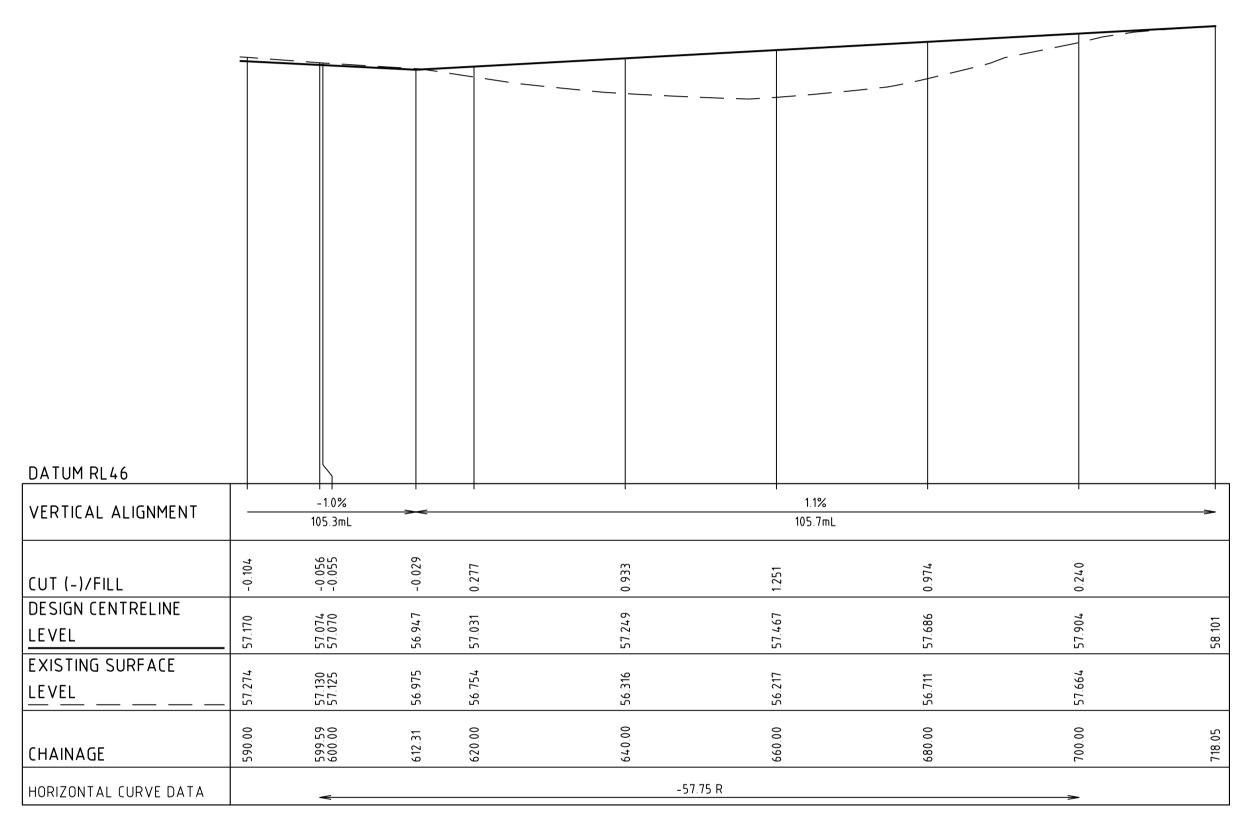

www.gandyandroberts.com.au | TASMANIA 7030 mail@gandyandroberts.com.au ph 03 6223 8877 DRAWING INDEX AND NOTES


159 DAVEY ST, HOBART TASMANIAN YOUTH JUSTICE FACILITY TASMANIA, AUSTRALIA 7000 | 466 BRIGHTON RD, PONTVILLE

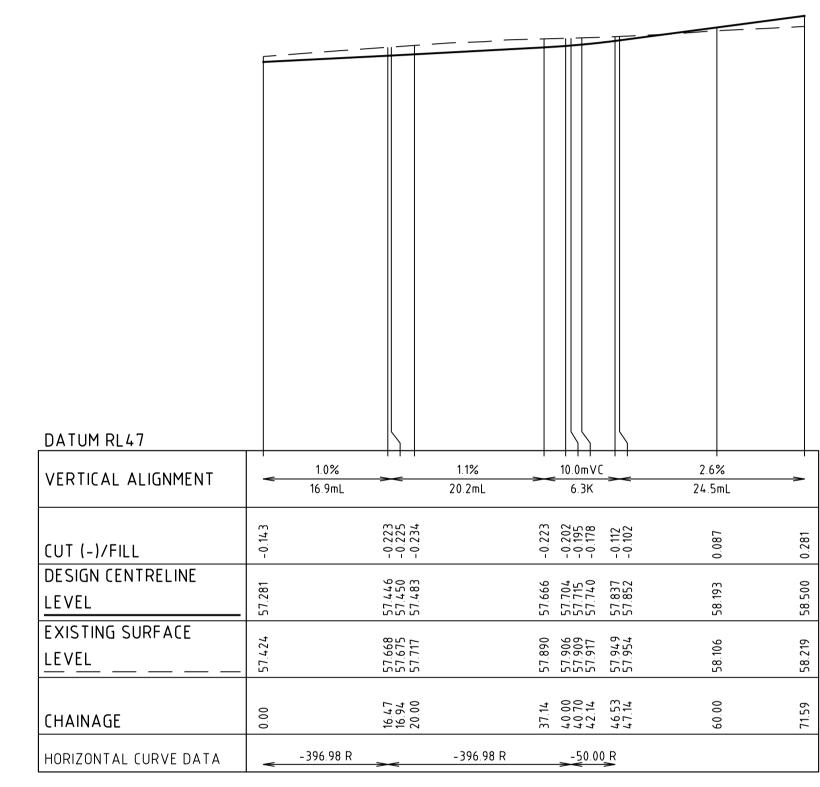
0	50mm	SCALE AS SHOWN@A1
DESIGNED JF	DRAWN JF	CHECKED DH
PROJECT	DRAWING	REVISION
24.0447	C001	Α

SMC - KEMPTON RECEIVED 03/11/2025

DATUM RL47																			
VEDTICAL ALICNMENT	-1.0%	0.8%	1.0%	'	' '	ı	0.5%	1 1	' '	'	ı	'	'	1.2%	1 1	ı	'	25.0	mVC '
VERTICAL ALIGNMENT	-1.0% 5.1mL	19.0mL	47.7ml				84.2mL							154.2mL				25.0i	зK
		m 01 m	•									•	_	-+	- 0.				
CUT / MEU I	721.0).073).072).069	0.059	116).184	07.0	0.703	-0.769	0.918	708:0	3.76	700.	7.57.7	7.431	-0.267	018	303	197	541
CUT (-)/FILL DESIGN CENTRELINE	-0	-0.	<u> </u>	<u> </u>	<u> </u>	Ţ	<u> </u>		<u> </u>	0	0	0							
	57.662 57.611	57.737 57.770 57.770	930	130	248	389	489	58.584	669	951	070	186	421	657	59.892	127	362	482	542
LEVEL	5 7(57.7	57.	58.	58.3	58.	58.48	58.	58.0	58.0	59.	59.	29.4	59.(59.6		98.09	60.4	90.1
EXISTING SURFACE	18	2.2	6	9	32	∞	2 0:	E 0	<u> </u>	ι —	5	99	86	0	7 8	6	6	7.)2
LEVEL	57.697	57.809 57.842 57.863	27.98	9.54	8.43	8.79	59.192	59.353	59.587	59.75	9.80	98.69	66.69	60.09	60.158	90.10	50.05	0.05	00.00
			<u>ν</u>									<u> </u>				<u> </u>		9	
5114111455	9(20.00 24.00 26.44	00	00	92.	00.0	120.00	139.02	00.00	00.0	7.55	0.00	0.00	0.00	260.00	0.00	00.0	0.16	0.00
CHAINAGE	0.00	20 24 26 26	07	09	71.	10	120.	173	156.	18(.8	20	22	54	26	28	30	31	32
HORIZONTAL CURVE DATA		52.25 R			-202.25 R		5:	2.25 R			_		-47.75 R						
											_								


LONGITUDINAL SECTION: ROAD 01
SCALE HOR 1:500 VER 1:100

15-31 PM S:\Projects\2024	· · · · ·	·					THIS DRAWING HAS NOT BEEN APPROVED FOR CONSTRUCTION		BERTS		TASMANIAN YOUTH JUSTICE FACILITY 466 BRIGHTON RD, PONTVILLE TASMANIA 7030	DESIGNED JF	DRAWN JF	SCALE 1:500H 1:100V@A1 CHECKED DH
A A	ISSUED FOR PLANNING APPROVAL	DH 21.10.2025						CONSC	SULTING INEERS	mail@gandyandroberts.com.au	DRAWING TITLE	PROJECT	DRAWING	REVISION
10/21 REV	DESCRIPTION	APP'D DATE	REV	DESCRIPTION	APP'D	DATE				ph 03 6223 8877	LONGITUDINAL SECTIONS 01	24.0447	C210	Α


	++-																		
											$ +$ $ _1$	_ — -							
																_			
																	· — — —		
DATUM RL46																			
VERTICAL ALIGNMENT	1.2%	><	25.0mVC	><	ı	-1.7%		ı	><	1	-1.1%	ı	><		1	-1.0%	1 1	I I	1.1%
	154.2mL		8.8K			98.3mL					73.5mL					105.3mL			105.7mL
	0.253	0.461	0.541 0.542 0.544 0.545	0.498	0.122	-0.151	-0.505	-0.927	-1.098 -1.101 -1.110	-1.094	-1.100	-1.078	-0.998	-0.826	-0.632	-0.352	-0.173 -0.152	-0.056 -0.055	-0.029
DESIGN CENTRELINE LEVEL	303	785	60.542 60.543 60.542 60.540	60.422	010	619	348	.017	58.793 58.774 58.723	.507	58.380	58.258	.075	57.870	670	57.470	57.270	57.074	56.947
EXISTING SURFACE	09 (09		09	09	65	29	. + 59		28			58.		57.				
LEVEL	650.09	60.021	60.002 60.000 59.998 59.995	59.924	59.888	59.830	59.853	776.65	59.891 59.875 59.833	59.601	26.63	59.336	59.074	58.696	58.301	57.821	57.442	57.130	56.975
CHAINAGE	295.00	310.16	320.00 320.54 321.72 322.66	335.16	360.00	380.00	700.00	420.00	433.50 435.25 440.00	00.097	471.80	483.04	500.00	520.00	240.00	560.00	580.00	299.59	612.31
HORIZONTAL CURVE DATA			<			-72.75 R					-47.75 F		« —	47.75 R	-52.24 R	><	17.75 R		57.75 R

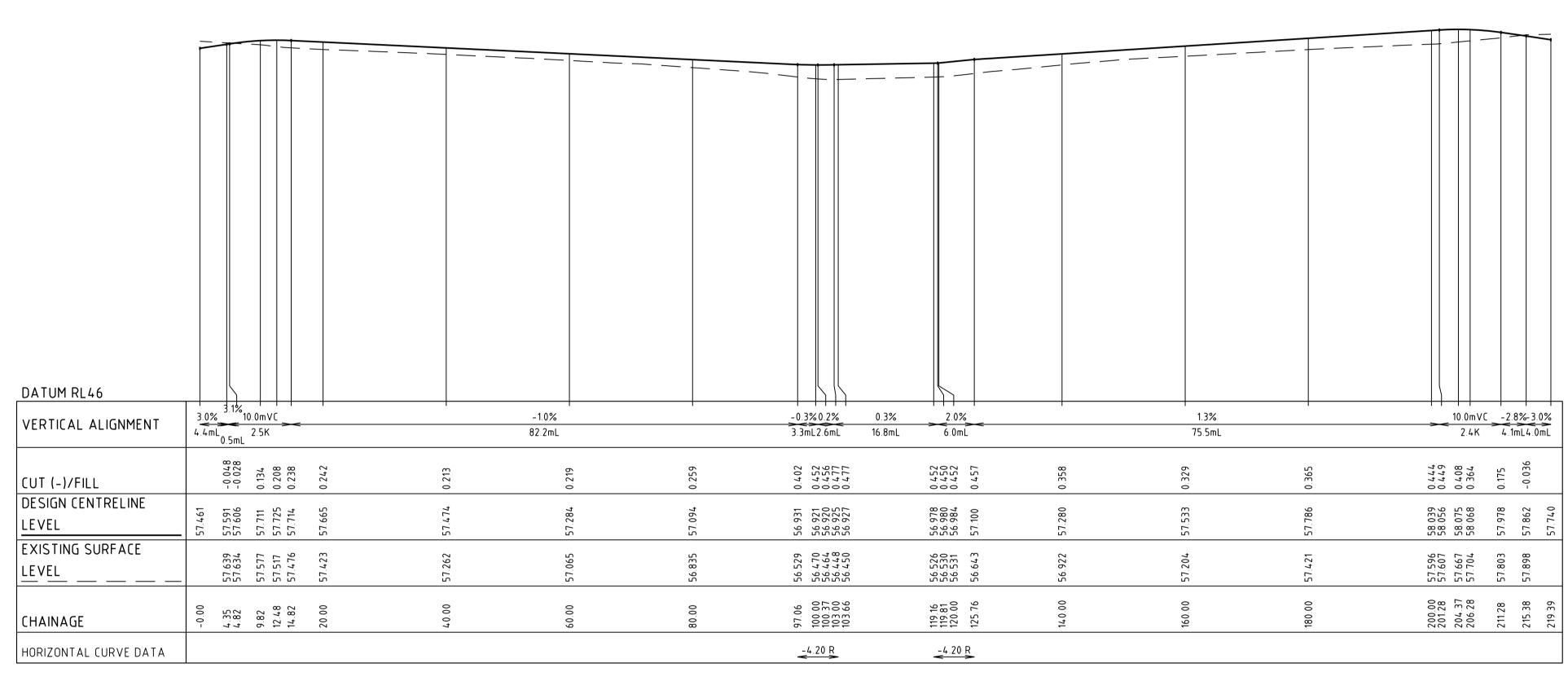
LONGITUDINAL SECTION: ROAD 01
SCALE HOR 1:500 VER 1:100

:\Projects\202	· · · · · · · · · · · · · · · · · · ·			GANDY AND ROBERTS		TASMANIAN YOUTH JUSTICE FACILITY 466 BRIGHTON RD, PONTVILLE	0	50mm	SCALE 1:500H 1:100V@A1
S PM S		ADDDOVED FOR CONCEDITION	CONSULTING	www.gandyandroberts.com.au	,	DESIGNED JF	DRAWN JF	CHECKED STANDARD
10/21/2025 8 	A ISSUED FOR PLANNING APPROVAL DH 21.10.2025 EV DESCRIPTION APP'D DATE	REV DESCRIPTION APP'D DATE		ENGINEERS	mail@gandyandroberts.com.au ph 03 6223 8877	LONGITUDINAL SECTIONS 02	PROJECT 24.0447	DRAWING C211	REVISION A

LONGITUDINAL SECTION: ROAD 01
SCALE HOR 1:500 VER 1:100

LONGITUDINAL SECTION: ROAD 02
SCALE HOR 1:500 VER 1:100

									_
77.6									
Pro Jec									
Σ									
35:37 P									
:0 < 7.07	Α	ISSUED FOR PLANNING APPROVAL	DH	21.10.2025					
717701	REV	DESCRIPTION	APP'D	DATE	REV	DESCRIPTION	APP'D	DATE	
•									_


THIS DRAWING HAS NOT BEEN	
APPROVED FOR CONSTRUCTION	

GANDY AND ROBERTS
CONSULTING ENGINEERS

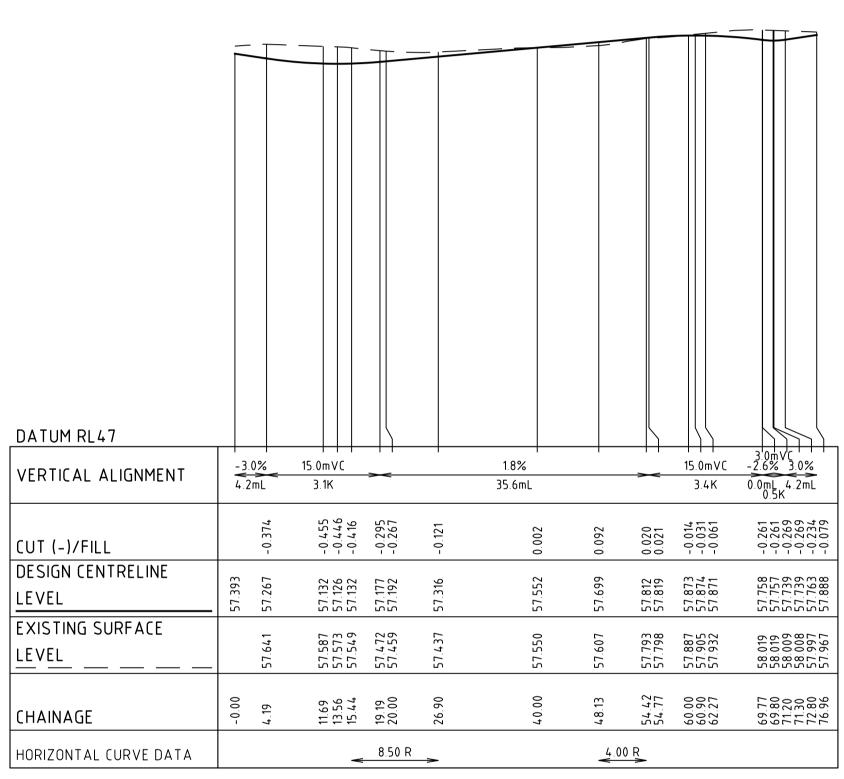
Ī.	159 DAVEY ST, HOBART
	TASMANIA, AUSTRALIA 7000
	www.gandyandroberts.com.au
	mail@gandyandroberts.com.au
	L 02 C222 0077

DAVEY ST, HOBART A, AUSTRALIA 7000	TASMANIAN YOUTH JUSTICE FACILITY 466 BRIGHTON RD, PONTVILLE	0
androberts.com.au	TASMANIA 7030	DESIGNED JF
randroberts.com.au ph 03 6223 8877	LONGITUDINAL SECTIONS 03	PROJECT 24.0447

0	50mm	SCALE 1:500H 1:100V@A1
DESIGNED J F	DRAWN JF	CHECKED DH
PROJECT 24.0447	DRAWING C212	REVISION A

LONGITUDINAL SECTION: ROAD 03
SCALE HOR 1:500 VER 1:100

		•						
								THIS DRAWING HAS NOT BEEN
								APPROVED FOR CONSTRUCTION
А	ISSUED FOR PLANNING APPROVAL	DH	21.10.2025					
REV	DESCRIPTION	APP'D	DATE	REV	DESCRIPTION	APP'D	DATE	


GANDY AND ROBERTS
CONSULTING ENGINEERS

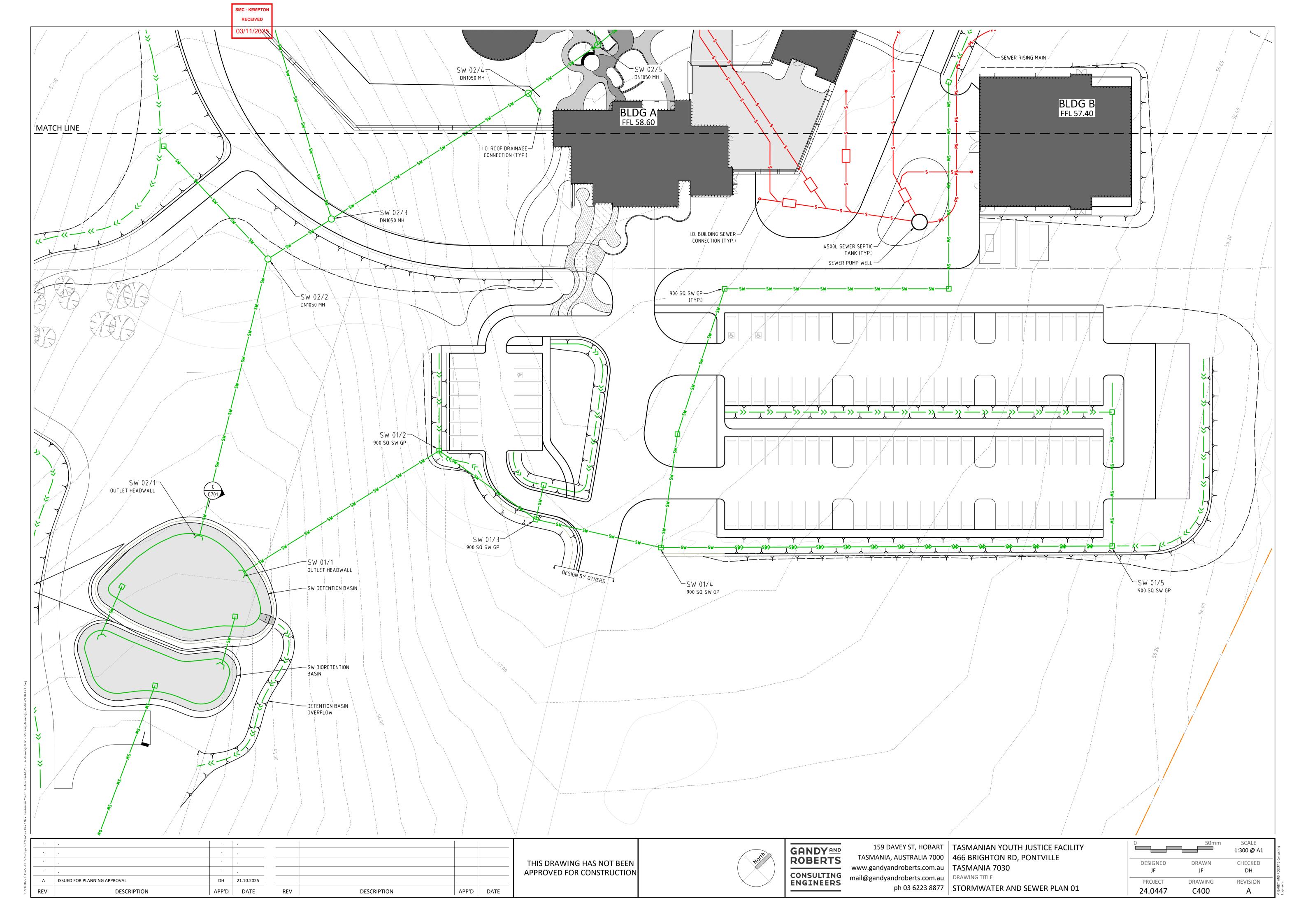
www.gandyandroberts.com.au TASMANIA 7030 mail@gandyandroberts.com.au DRAWING TITLE

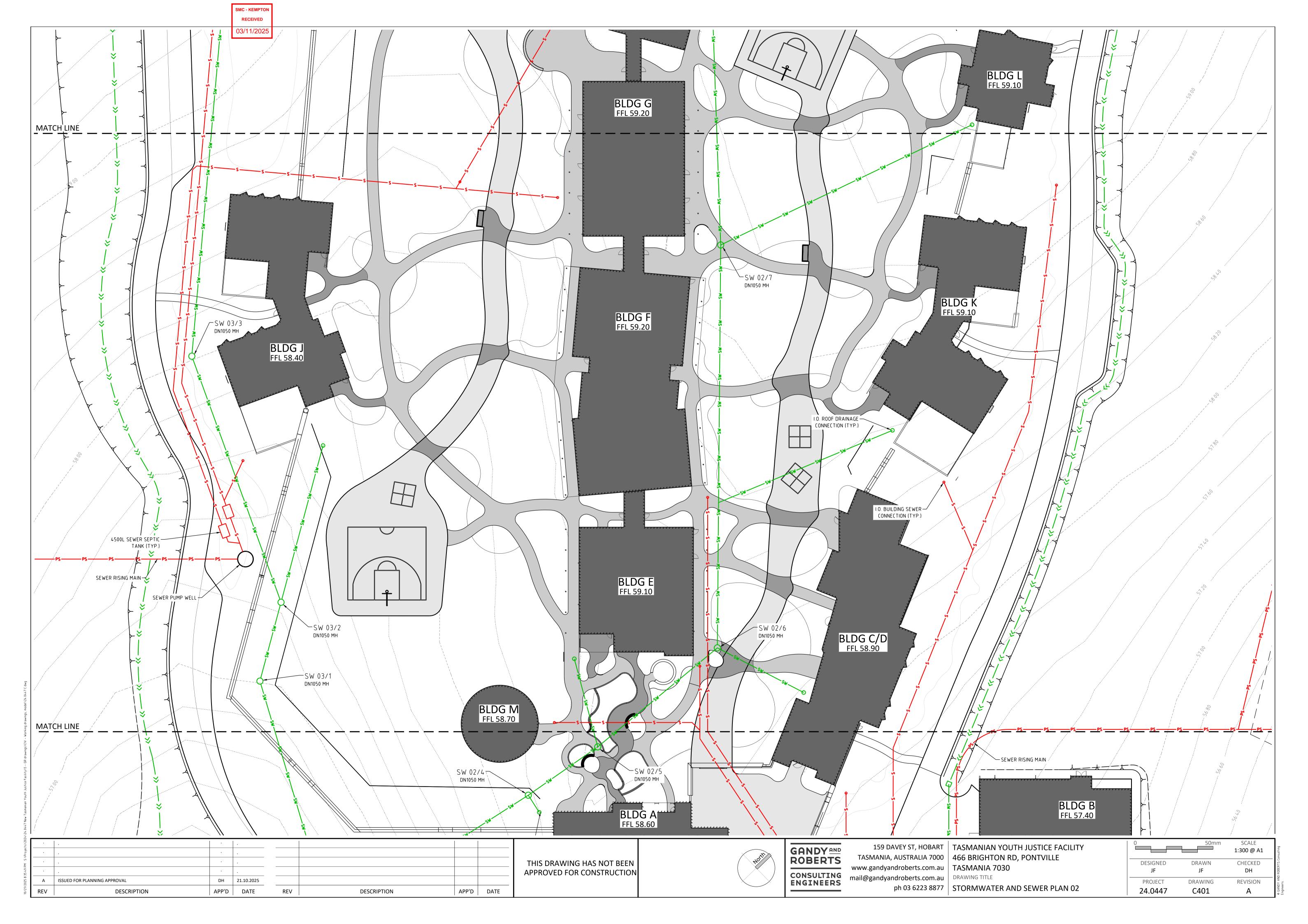
159 DAVEY ST, HOBART TASMANIAN YOUTH JUSTICE FACILITY TASMANIA, AUSTRALIA 7000 466 BRIGHTON RD, PONTVILLE ph 03 6223 8877 LONGITUDINAL SECTIONS 04

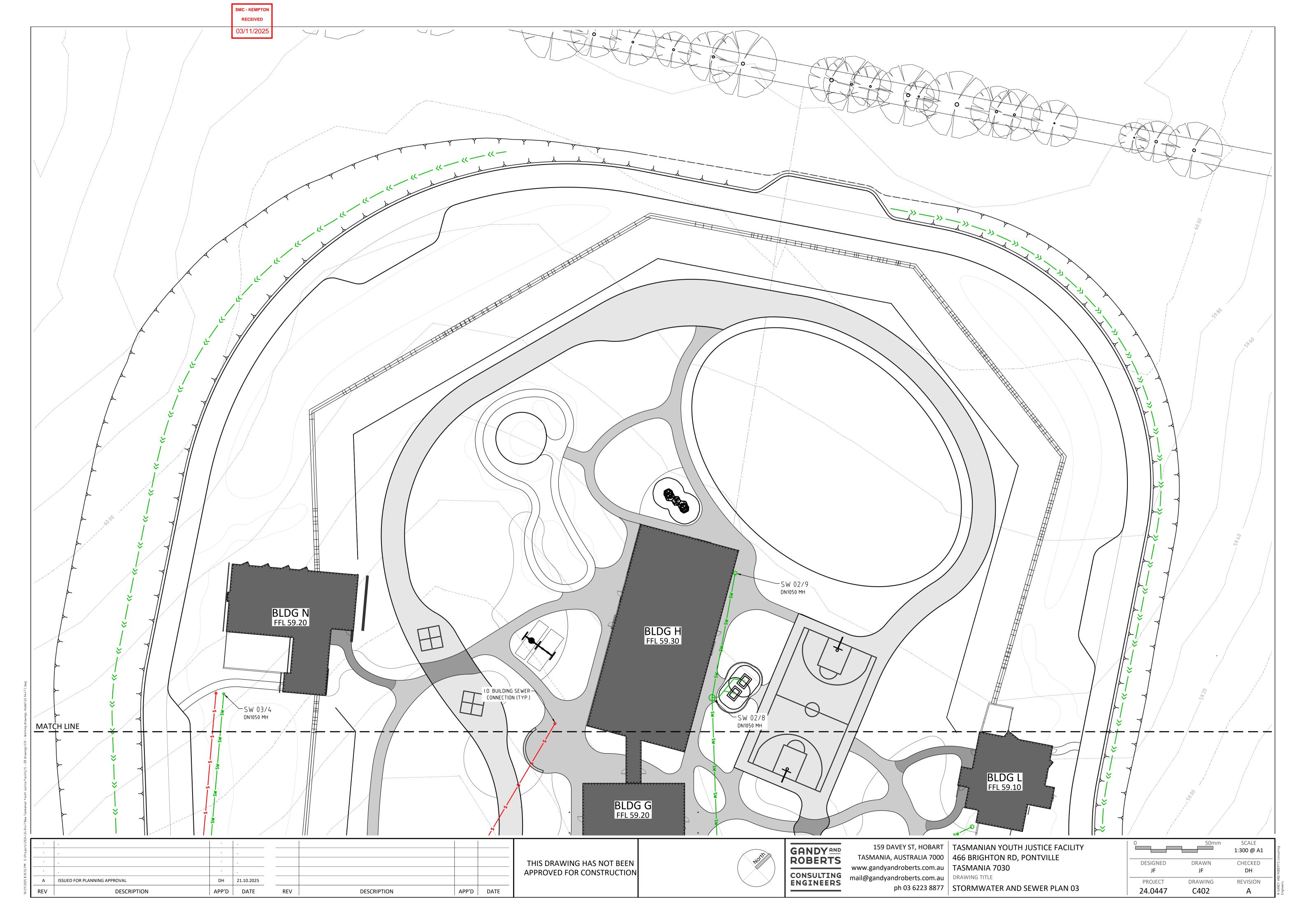
0	50mm	1:500H 1:100V@A1
DESIGNED JF	DRAWN JF	CHECKED DH
PROJECT	DRAWING	REVISION
24.0447	C213	Α

SMC - KEMPTON RECEIVED 03/11/2025

LONGITUDINAL SECTION: ROAD 04
SCALE HOR 1:500 VER 1:100


A ISSUED FOR PLANNING APPROVAL 21.10.2025 REV DESCRIPTION APP'D DATE REV DESCRIPTION APP'D DATE


THIS DRAWING HAS NOT BEEN APPROVED FOR CONSTRUCTION GANDY AND ROBERTS CONSULTING ENGINEERS


www.gandyandroberts.com.au TASMANIA 7030 mail@gandyandroberts.com.au DRAWING TITLE ph 03 6223 8877 LONGITUDINAL SECTIONS 05

159 DAVEY ST, HOBART TASMANIAN YOUTH JUSTICE FACILITY TASMANIA, AUSTRALIA 7000 | 466 BRIGHTON RD, PONTVILLE

SCALE 1:500H 1:100V@A1 DESIGNED DRAWN CHECKED DH PROJECT DRAWING REVISION 24.0447 C214 Α

•	
•	
•	
A	ISSUED FOR PLANNING APPROVAL
REV	DESCRIPTION

SCALE HOR 1:500 VER 1:100

LONGITUDINAL SECTION

LINE No. SW 01

REV

APP'D DATE

		THIS DRAWING HAS NOT BEEN APPROVED FOR CONSTRUCTION
APP'D	DATE	

GANDY AN ROBERTS
CONSULTING ENGINEERS

159 DAVEY ST, HOBART TASMANIAN YOUTH JUSTICE FACILITY www.gandyandroberts.com.au TASMANIA 7030 mail@gandyandroberts.com.au DRAWING TITLE

TASMANIA, AUSTRALIA 7000 | 466 BRIGHTON RD, PONTVILLE ph 03 6223 8877 STORMWATER LONGITUDINAL SECTIONS 01

50mm SCALE 1:500H 1:100V@A1 DESIGNED DRAWN CHECKED PROJECT DRAWING REVISION 24.0447 C410

PRECAST OUTLET HEADWALL	900 SQ GP	900 SQ GP TSD-SW02-v3, TSD-SW03-v3	900 SQ GP TSD-SW02-v3, TSD-SW03-v3	1SD-SW02-v3, TSD-SW03-v3
	DN450/STORMPRO SN8	DN450/STORMPRO SN8	DN450/STORMPRO SN8	DN300/STORMPRO SN8
DIAMETER/MATERIAL GRADIENT	0.77%	0.52%	0.53%	0.51%
	41.00			
DEPTH TO 0.0 PT 10	0.00			1.57
		54.69	54.86	55.14
FINISHED 08 75 SURFACE LEVEL				
EXISTING SURFACE 5.				
CHAINAGE	44.35	22.89	24.71	89.86

DESCRIPTION

RECEIVED 03/11/2025

SMC - KEMPTON

RECEIVED 03/11/2025

OUTLET HEADWALL	ANHOLE -v3, TSD	SD-SW02-v3, TSD-SW03-v3	NHOLE (CLASS B)	(CLASS B))-SW03-v3	ASS B)			-v3	وَ	S & S	
PRECAST		-OS1	DN1050 MAI TSD-SW02-v	DN1050 MANHOLE TSD-SW02-v3, TSI	DN1050 MANHOLE (CLASS I TSD-SW02-v3, TSD-SW03-			DN1050 MANHOLE (CLASS TSD-SW02-v3, TSD-SW03-	O A LOS ELIGIBLES AND A PAPARA	TSD-SW02-v3, TSD-SW03-v3	150 IOS. ROOF DRAINAGE CONNECTION
											I I DN1
DIAMETER/MATERIAL GRADIENT DN450/STORMPRO S 0 86%	SN8 STORMPRO SN	8 DN450/STORMPRO SN8 3.00%	DN4 STORMPI 0.92	RO SN8	DN450/STORMPRO SN8	*	.TORMPRO SN8 0.55%		DN225 PVC SN8 0.94%	DN225 PVC SN8	
DATUM R.L. 42.00 DEPTH TO	0.98	2.22	1.60	1.60	1.69	1.54		1.19		0.90	
DEPTH TO INVERT		55.35	56.75	56.90	57.20	7.35		57.77		58.35	
INVERT LEVEL 5	75 08.	15.	35 5(50 56] <u>`</u>		5.		120 28	24
FINISHED SURFACE SE	30 25	38 57	17 58	6+				12 59		30	75
EXISTING SURFACE SLEVEL	55.8	8	288	28.4	58.5			59.		593	59.5
CHAINAGE S5.01	10.99	87 69 45.06	16.3 15.	130.87	29.94	160.8	77.72	238.53	48.10	E9 98 24.44	71107
LINE No. SW 02											

LONGITUDINAL SECTION SCALE HOR 1:500 VER 1:100

A ISSUED FOR PLANNING APPROVAL DESCRIPTION APP'D DATE REV REV

THIS DRAWING HAS NOT BEEN APPROVED FOR CONSTRUCTION

APP'D DATE

DESCRIPTION

GANDY AND ROBERTS

www.gandyandroberts.com.au TASMANIA 7030 CONSULTING mail@gandyandroberts.com.au ph 03 6223 8877 STORMWATE

159 DAVEY ST, HOBART TASMANIAN YOUTH JUSTICE FACILITY TASMANIA, AUSTRALIA 7000 466 BRIGHTON RD, PONTVILLE ph 03 6223 8877 STORMWATER LONGITUDINAL SECTIONS 02 0 50mm SCALE 1:500H 1:100V@A1 DESIGNED DRAWN PROJECT DRAWING 24.0447 C411

CHECKED REVISION

/LZ / 0L	REV	DESCRIPTION	APP'D	DATE		REV	DESCRIPTION	APP'D
2025 8	Α	ISSUED FOR PLANNING APPROVAL	DH	21.10.2025	_			
35:58								
Σ								
0 0								
15/20	•		•					

LONGITUDINAL SECTION

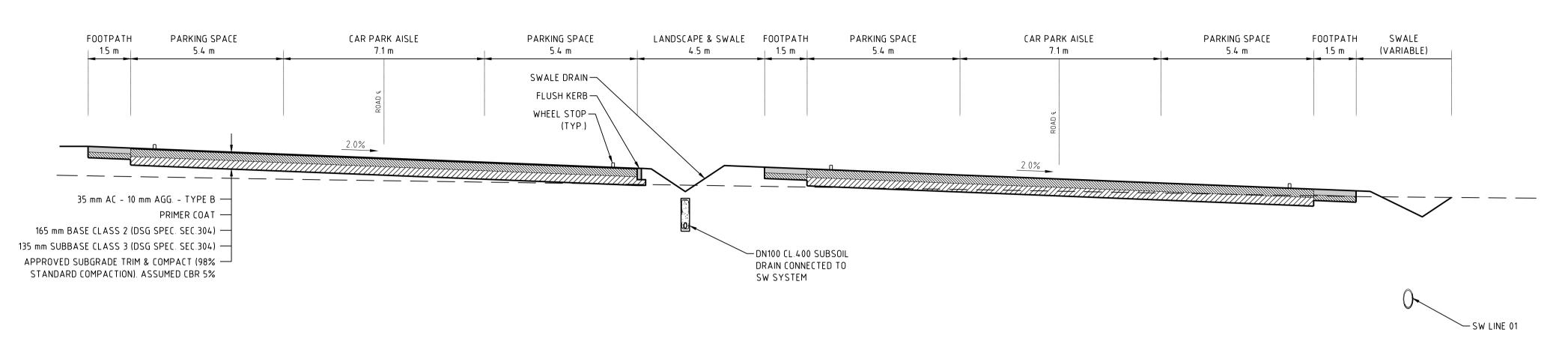
SCALE HOR 1:500 VER 1:100

THIS DRAWING HAS NOT BEEN APPROVED FOR CONSTRUCTION	
---	--

DATE

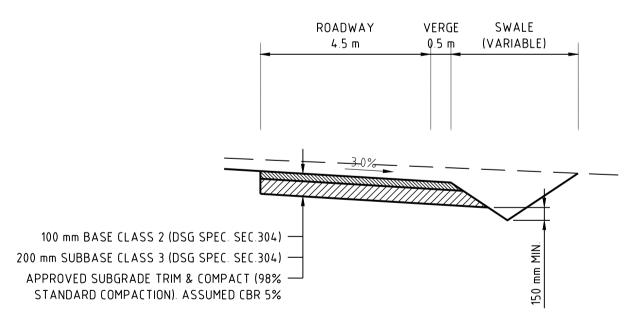
GANDY AND ROBERTS

159 DAVEY ST, HOBART TASMANIAN YOUTH JUSTICE FACILITY www.gandyandroberts.com.au TASMANIA 7030 CONSULTING mail@gandyandroberts.com.au ph 03 6223 8877 DRAWING TITLE STORMWATE


TASMANIA, AUSTRALIA 7000 466 BRIGHTON RD, PONTVILLE ph 03 6223 8877 STORMWATER LONGITUDINAL SECTIONS 03

0 50mm SCALE 1:500H 1:100V@A1 DESIGNED DRAWN CHECKED PROJECT DRAWING REVISION 24.0447 C412

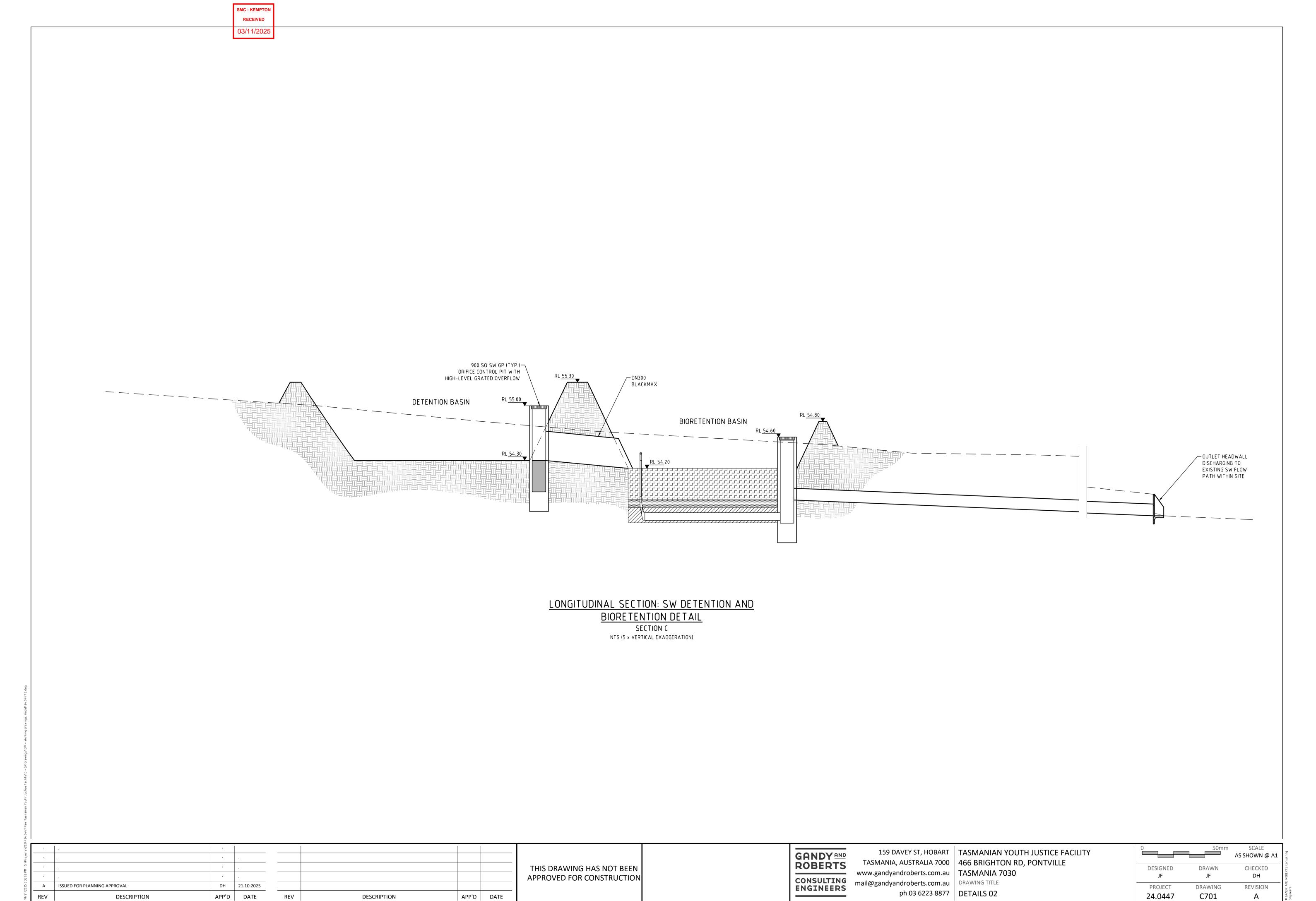
	JUNCTION: LINE SW 02	SW 03/1	SW 03/2		SW 03/3		SW 03/
	02/3	03/1	03/2		03/3		03/
		(SS B) 103-v3	(SS B) /03-v3		(SS B) /03-v3		ECTION
		DN1050 MANHOLE (CLASS B.) TSD-SW02-v3, TSD-SW03-v3	DN1050 MANHOLE (CLASS B) TSD-SW02-v3, TSD-SW03-v3		DN1050 MANHOLE (CLASS B.) TSD-SW02-v3, TSD-SW03-v3		AGE CONN
		N1050 MAN D-SW02-v	N1050 MAN D-SW02-v		N1050 MAN D-SW02-v		DOF DRAIN
		0 75	O ISI		Q IS		DN150 10S. ROOF DRAINAGE CONNECTION
							NO
	0	-					
DIAMETED (MATERIA)	DN300/STORMPR	D O SN8 STORN	N300 1PRO SN8	DN225 PVC SN8		DN225 PVC SN8	
DIAMETER/MATERIAL GRADIENT	1.04%	><	.11%	0.99%	><	0.99%	>
DATUM R.L.	42.00						
DEPTH TO INVERT	1.92	1.30	1.14		1.09		100
INVERT LEVEL	55.27	56.15	56.45		56.95		777
FINISHED SURFACE LEVEL	57.57	57.45	57.52		58.04		58.76
	26.38	57.01	57.22		28.02		29.24
EXISTING SURFACE LEVEL							ļ


RECEIVED 03/11/2025

SMC - KEMPTON

TYPICAL SECTION: ROAD 03
CAR PARK AND SWALE DETAIL
SECTION A

HORIZONTAL SCALE 1:100 VERTICAL SCALE 1:50


TYPICAL SECTION: ROAD 01

FIRE ACCESS DETAIL

SECTION B

HORIZONTAL SCALE 1:100 VERTICAL SCALE 1:50

Projects/202.						THIS DRAWING HAS NOT BEEN ROBER	159 DAVEY ST, HOBART	TASMANIAN YOUTH JUSTICE FACILITY 466 BRIGHTON RD, PONTVILLE	0	50mm	SCALE AS SHOWN @ A1
36.00 PM S.	· .					ADDDOVED FOR CONCERNICTION	TOP CONCERNICATION www.gandyandroberts.com.au TASMANIA	TASMANIA 7030	DESIGNED JF	DRAWN JF	CHECKED DH
A ISSUED FOR PLANNING APPROVAL REV DESCRIPTION	DH 21.10.2025 APP'D DATE	REV	DESCRIPTION	APP'D	DATE	APPROVED FOR CONSTRUCTION CONSULT ENGINE	mail@gandyandroberts.com.au ph 03 6223 8877		PROJECT 24.0447	DRAWING C700	revision A

DESCRIPTION

APP'D DATE

REV

DESCRIPTION

APP'D DATE